N70-25287

A SELF-STUDY COURSE IN FORTRAN PROGRAMING -
VOLUME I - TEXTBOOK

Valmer Norrod, et al

Computer Sciences Corporation
El Segundo, California

April 1970

g o = e
CACE Mg
5 i\ T = =y Iz £ L
By sl D H I fias

qRE Y V4 Q‘;‘w._.& Eimem = § { -
) Bl L e v

Distributed ... ‘to foster, serve
and promote the nation’s
economic development

and technological

advancement.’

U.S. DEPARTMENT OF COMMERCE

This document has been aproved fo public release and sale.

AL

INFORMATION SERVICE

22151

Reproduced by

NATIONAL TECHNIC

Springfield, Va.

NASA CR-1478, Vol.

A SELF-STUDY COURSE IN FORTRAN PROGRAMING

Volume I - Textbook

By Valmer Norrod, Sheldon Blecher, and Martha Horton

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 5-9758 by
COMPUTER SCIENCES CORPORATION
El Segundo, Calif.

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

of sala by
or sale by the Cleunﬁguuij;u for Federa

|
Springfield, Virginia 22151

Scientific and Technical Information

CFSTI price $3.00

I

Page intentionally left blank

TTT

ABSTRACT

This two-volume manual is a comprehensive course in FORTRAN programing.
Beginning with number systems and basic concepts, it proceeds systematically
through the elements of the FORTRAN language and concludes with a discussion
of programing‘techniques such as flow charting and debugging. Volume I is
organized as a programed textbook with frequent checkpoints and abundant
examples. Exercises and answers referred to in Volume I are contained in
the Workbook - Volume II. Written for training programers at the NASA Langley
Research Center, the manual is based on Control Data FORTRAN 2.3, but it is

generally applicable to other versions.

Page intentionally left blank

FOREWORD

This manual was developcd by Computer Sciences Corporation for training FORTRAN programers
at the NASA Langley Research Center. While it is a description of Control Data FORTRAN 2.3
structured for self-study, it is generally applicable to other versions of FORTRAN.

The following personnel of the Langley Research Center worked closely with the contractor and
made major contributions to the document: Lessie D. Hunter, Margaret A. Ridenhour, Nancy L. Taylor,

and Dorothy J. Vaughan. Prior to publication, the manual has been used by more than 100 people
and has proved to be very effective.

It is suitable for use by an individual studying alone, or as the basis for informal group
study. When used as a group text, experience has shown that the study is more effective if it is
supplemented by periodic reviews by a course monitor and concluded with a final examination.

Parts I - IV are intended to cover the basic elements of the FORTRAN language and may be used
as a course for the engineer or manager interested in acquiring only a basic knowledge of the
language but not intending to progress into actual programing work.

Roger V. Butler
Head, Computational Techniques Section
Langley Research Center

Page intentionally left blank

TTa

SECTION

Part I

Ry
Qw

Part II

4 i
BB

=

| 8 e

-

QEEUOOWE >

H

Part III

III. A
II1.B
L. C
1I1.D
H1.E
I F

TABLE OF CONTENTS

GENERAL

Introduction
Number Systems
Basic Computer Concepts

GLOSSARY

FORTRAN BASICS

Fortran Arithmetic Statements
Data

Mixed Mode Expressions

Arrays and Subscripted Variables
Data Types

Logical Operations

More on Mixed Mode Expressions

CONTROL STATEMENTS

Introduction

GO TO Statements
Logical Expressions

IF Statements

The DO Statement

Other Control Statements

PAGE

56

64
81
88
93
99
111
115

118
121
132
146
165
195

- e e ®

®

oZzgrRErIAOMEUQUW P

'Y

B

cEEEEEEEEEEEE

o)
o
a
<

=
S

°

° ®

= omaoHEguOw

a

< Sidsdss

TABLE OF CONTENTS (Continued)

PAGE
BASIC INPUT/OUTPUT
Introduction v 198
Basic I/ O Statements 199
1/ 0O List : 199
Data Formatting 205
Ew.d Conversion, Output 208
Ew.d Conversion, Input 211
Fw.d Output 215
Fw.d Input 216
Iw, Input and Output 217
Editing Specifications 219
New Record 221
wH, Output and Input 225
Repeated Specifications 226
Input/ Qutput Statements 227
Data Statements 236
SUBPROGRAMS
Statement Functions, Function and Subroutine
Subprograms, COMMON , 243
Subprograms 249
Function subprograms 251
Subroutine Subprograms 255
Available Functions 259
COMMON ' 265
Block Data 274
EQUIVALENCE Statements 278
EXTERNAL Statements 289

Xt

SECTION

Part VI

VI.
VI,
VI.
VI.
VI
VI.
VI.
VI
VI
VI.
VI.
VI.
VI.
VI.
VI.
VI.

YOZZCRAHMZIQREDQD »

Part VII

VIIL. A
VIL.B
VII.C
VII.D
VIi.E

TABLE OF CONTENTS {Continued)

INPUT/OUTPUT EXTENDED

Introduction

Gw.d, . Input and Output
Lw, Input and Output
Scale Factors

Group Specifications

Aw, Input

Aw, Output

Rw, Input and Output
Ow, Input and Output
Variable Formats
ENCODE/ DECODE Statements
Unformatted I/ O (binary)
Data Files

NAMELIST Statement
Program Files

System Files

PROGRAMING TECHNIQUES

Steps in Problem Solving
Accuracy

Simplicity

Debugging

Helpful Hints

PAGE

293
298
301
303
308
310
312
313
314
316
321
328
330
334
339
342

347
354
355
355
360

I.A

LA

1

A SELF-STUDY COURSE IN FORTRAN FROGRAMING
Volume I - Textbook

By Valmer Norrod, Sheldon Blecher, and Martha Horton
_ Computer Sciences Corporation
Introduction

To serve as both an introduction to this manual and as a note of encouragement

to the student, it can be stated with assurance that anyone who has conquered

the 3 R's can learn FORTRAN, This, of course, assumes a good self-teach manual
(our obligation) and reasonable effort on the student's part (your obligation).

One of the primary objectives of this introductory section is to familiarize
the student with the philosophy behind this manual and to present basic
computer concepts which are gpplied in computer programming. Much of
the information presented here is not necessary in order to learn how to

use FORTRAN but it will at least serve to place things in proper perspective.

One being exposed to computer programming for the first time might very
well ask the following questions.

What exactly is a computer ?

How does a computer work?

What is 2 computer program ?

How does a computer use a computer program?

How does information get in and out of a computer ?

What specific steps must be taken in order to get the computer to do something?

I.A.1
{Cont.)

The material covered in the introductory part of the course attempts to
answer these questions and in so doing covers basic background information.
This portion of the manual will acquaint the new programmer with the tools
with which he will be operating. Included will be discussions and exercises
on what a computer 1is, how it operates, and what 1t requires in order to
operate. Exercises and answers are contained in Volume II and will be re-
ferred to at the appropriate points in the text, Also, in order to famil-
iarize the student with words and expressions in common use in the computer
field, a glossary of computer terms has been compiled and incorporated as
part of this introductory section.

The philosophy behind this self-teach manual is to break FORTRAN down to
its truly basic elements. At times it may seem that we are 'begging the
point". Be patient with us - at worst we are guilty of over-explanation.
We have chosen over-explanation as a method by which we can-avoid the
more serious pitfall of insufficient explanation.

In order to insure that a peint is clearly made, a question or a series of
questions folliows the presentation of each new fact. The questions have

been arranged on the page with the answers in the margin so that you can
cover them while reading the questions. If you answer a guestion incorrectly
reread the previous statement until you understand the answer to the question.

Great pains have been taken in order to develop an orderly accumulation of
facts in small steps. To fully realize the advantages of this manual - take
the small steps - don't jump around.

8

I.B.1

1.B.2

I.B.3

I.B.4

Number Systems

Basic to the understanding of a computer system is the understanding of
number systems. All of us are familiar with the decimal number system
although many of us, due to the way we were taught, have no idea of what
another number system means. '

What makes the decimal number system a decimal system is simply the
fact that 10 distinct digit characters are defined within the system (0, 1,
2,3,4,5,6, 17, 8, 9. The decimal number system can also be referred
to as a number system to the base 10 since the number of digit characters
defined in a number system establishes the base of the number system.

The decimal number system is a number system to the base . Answer:

As an aside, it should be realized that there is nothing truly logical
about using the decimal number system. It simply evolved because
we have 10 fingers (10 distinet digit characters) which proved con-
venient as a counting device (as many of us realize).

A number system which contains 8 distinct digit characters (0, 1, 2,

3, 4, 5, 6, 7) is referred to as an octal number system or a number
system to the base 8. Similarly a number system containing 2 digit
characters (0, 1) is referred to as a binary number system or a number
system to the base 2. ’

A binary number system contains
An octal number system contains

digit characters. Answer:
digit characters. Answer:

10

_%"

I.B.5

Clearly, using numbers as a counting device, one must be able to count
more than the number of digits contained in the number system.

As an illustration let's zssume we have 37 marbles to count and that we
are fortunate enough to have two 10-fingered people available to perform
the count. How would we go about counting the number of marbles on
these fingers ? We would bave person 1 count 10 marbles on his fingers,
Every time person 1 has completed a count of 10, person 2 will raise a
finger. At the completion of the count person 2 will have 3 fingers raised
indicating that person 1 has counted 10 three times. Person 1 at the com-
pletion of the count will have 7 fingers raised, Looking at the raised
fingers of these two people we would know that the total count was 37.
Three 10's indicated by person 2 plus the 7 indicated by person 1.

Tt should be noted that in this illustrative example person 1 will never
raise 10 fingers. Instead of person 1 raising his tenth finger, he lowers
all his fingers and person 2 raises one of his fingers., The maximum
count possible by these 2 people is 99, 9 fingers raised by both persons
1 and 2.

To count any further requires the assistance of a third person. A finger
raised by this third person indicates the completion of a count of 10 tens =
10 x 10 = 102 = 100.

Let's review for a moment and observe the pattern. The digits of person 1
represent single counts (107). The digits of person 2 represent counts of
10 (101). The digits of person 3 represent counts of 100 (102). The

digits of person 4 will represent a count of 1000 (10°), person 5 a count of
10,000 (104‘), and so on.

Note that a number raised to a power of zero equals 1 (10O =1).

I.B.5
(Cont.)

The point of this whole illustration is to show the significance of digit position
in a number, Although each person in the illustration has only 10 digits, the
count is only limited by the number of people or analogously by the number of
positions in a number - not by the number of digits available to the position.

Let's carry the analogy to a decimal number 285383, We assign positions as
follows.

position - 6 5 4 3 2 1

position 1 contains 3 whiéh represents 3 ones = 3 x 100.
: 1
position 2 contains 8 which represents 8 tens =8 x 10

position 3 contains 3 which represents 3 hundreds = 3 x 102.

3
position 4 contains 5 which represents 5 thousands =5 x 10 ,

position 5 contains 8 which represents 8 ten thousands = 8 x 104.

position 6 contains 2 which represents 2 hundred thousands = 2 x 105.

The total number is the sum of all these:
3x100+8xlol+3x102+5x103+8}{104+2x105
3x1+8x10+3x100+5x1000+ 8x 10000+ 2 x 100000

3 + 80 + 300 + 5000 + 80000 + 200000,

Fill the following box with the decimal number 95432.

position—» 5 4 3 2 1 | Answer: |9l 5432}

L1 i i

_9—

1.B.5
(Cont.)

1.B.6

 x10¥s w10t __x10®+__x10°4__x10

0
position 1 contains a ___ which represents ones = x 10,

position 2 contains a __ which represents ___ tens = X 101.

position 3 contains a which repr‘esents o hundreds = ___ X 102.
position 4 contains a ___ which represents ___ thousands = X 103.
position 5 contains a which represents ___ten thousands = X 104.

The total number is a sum of products.

4

which equals ___ x1+___ x10+ x100+ __ +1000+ __ x 10000

which equals + + + + .

Let's carry our analogy a step further and assume that we wish again

to count 37 marbles but only have people available with 8 fingers. This
time person 1 can only count to 8 and person 2 must keep track of the
number of times person 1 completes a count of 8. To count to 37 requires
person 1 to complete a count of 8 four times which means that person 2
has 4 digits raised. Person 1 at the completion of the count will have 5
digits raised. So - person 2 has 4 digits raised and person 1 has 5 digits
raised representing the number 45 in a number system fo the base 8
(octal). A subscript after a number is commonly used to denote the base
of the number. For example, 45 8
A 45 in the octal number system therefore represents four 8's and five
units or 1's and is equal to 37 in the decimal number system.

means 45 in 2 number system to the base 8.

Answer:
Answer:
Answer:
Answer:

Answer:

Answer:

Answer:

Answer:

-

W w1 o W
© o W N
@ Ut &k W

-

“
-

2,8, 4,5, 9
2,8, 4,5, 9

2, 30, 400, 5000,
90000

I.B.6
(Cont.)

position— 5

Getting back to our eight-fingered people, the addition of a third person
enables us to keep track of how many times 8 eights are counted. Each
digit raised by this third person therefore represents 8 eights, 3x8, 8
or 64,

Once again a pattern arises. Equating the people to digit positions we find
that in the octal number system, digits in position 1 represent the number
of ones (8), digits in position 2 represent the numbgr of eights (87), digits
in position 3 represent the number of eight eights (87), digits in position 4
represent the number of eight eight eights (8") and so on,

Let's examine the octal number 35276.

We assign positions as follows,

4 3 2 1
slslzl7]6]|
position 1 contains 6 which represents 6 ones = 6 x 80.
position 2 contains 7 which represents 7 eights = 7 x 81
position 3 contains 2 which represents 2 eight eights = 2 x 82.
position 4 contains 5 which represents 5 eight eight eights = 5 x 83.

position 5 contains 3 which represents 3 eight eight eight eights = 3 x 84'
The total number is representable as the sum.
6x80+7x81+2x82+5x83+3x84.

To evaluate the decimal equivalent to the octal number 35276 all we

1.B.6 have to do is perform this summation and substitute appropriate values
(Cont.) to the powers of 8,

1 2
352768=6X80+7x8 +2 %8 +5:~:83+37{84
=86x1+7Tx8+2x64+5x512+3x4096

= @8-+ 56 +128 + 2560+ 12288

= 150381 0
The octal number 35276 is equivalent to the decimal number 15038.
Fill the following box with the octal number 3752.
position—» 4 3 2 1 Answer:
3171512
position 1 contains a which represents ones = X 80, Answer: 2, 2, 2
1

position 2 contains a which represents eights = x8 ., Answer: 5, 5, 5

2
position 3 contains a which represents eight eights = x8 . Answer: 7, 7, 7
position 4 contains a which represents eight eight eights = X 83., Answer: 3, 3, 3
The octal number 3752 may be represented as the sum:

1 2
x80+ x8 + x8 + x83. Answer: 2, 5, 7, 3

4510 is a number to the base . Answer: 10
45, eontains 10'sand __ 1's, Answer: 4, 5

1.B.6
(Cont,)

I.B.7

45 _ is a number to the base

8
458 contains 8's and 1's.
Since 45_ contains 8's and 1's, it is equivalent

to the decimal number

The base of a number system can now be seen to have significance not
only as the number of digits contained in the number system but also
with respect to digit position.

Expressing a whole number as a sum of products, each product is
composed of the digit multiplied by the base of the number system
raised to a power which is the number of positions from the right-
most digit.

Restating this rule in terms of a formula we find that:

Each Product = Digit x BasePosmon from right-most digit

Take the octal number 456. Expressing this number as a sum of
products we know immediately that since the number contains 3
digits it will be represented by the sum of 8 products. Digit 4 is
two positions from the right-most digit 6 so that applying the
formula we find the product to be:

4 X 82 «~ Position from right-most digit

7 T
Digit Base

Answer: 8
Answer: 4, 5

Answer: 4, 5, 37

_OI...

1.B.7
(Cont.)

Digit 5 is one position from the right-most digit § so that its product is

5 b 81 “~ Position from right-most digit

7 7
Digit Base

Digit 6 is 0 positions from the right-most digit so that its product is

8 % 80 * Pogition from right-most digit

1 i
Digit Base

The octal number 456 is thus expressed by the following sum of
products.

4x8°+5%x8 +6x8°

Indicate the value associated with the digit underlined in terms of its product.

73215

401
34010,

32175

8
9732

10

6
9836,

Answer:

Answer:

Answer:

Answer:

Answer:

7x8
1x8
5x8
9x10

1
5x 10

I.B.7
(Cont.)

1.B.8

Express the fbllowing numbers as sums of products.

378

506

%10

- 900

10

All this discussion sbout number systems has been leading up to the
fact that with the use of computers we are faced with the problem

of dealing with numbers to base systems other than ten. For this
reason it is important to have some idea of what is meant by number
systems.

The number systems often used when working with computers are
decimal, octal, and binary.

The binary number system is the number system under which
computers operate.

The octal number system is a convenient system by which binary
numbers can he represented,

The decimal number system is, of course, the system of the user.

Answer:

Answer:

Answer:

Answer:

3x81+7x80

1
5x82+0x8

+ka80

9X101+5X100
9><:102+0x101

+0x100

_Z‘[—

1.B.8
{Cont.)

I.B.9

The use of numbers in each of these systems necessarily requires
an ability to convert from one number system to another and also to
perform the basic arithmetic operations of addition and subtraction
in each of the systems.

Computers operate under which number system? Answer:

The octal number system is a convenient system by which Answer:

numbers can be represented.

Octal to Binary Conversion

Due to characteristics of the binary and octal number systems,
octal numbers are easily converted to binary numbers and vice
versa. This is due to the fact that when binary digits are taken
3 at a time, there is a one to one correspondence to octal digits
as indicated in the following table,

Octal digit Binary digits

000
001
010
011
100
101
110
111

SR U N O

Binary

binary

I.B.9
(Cont.)

Conversion from octal to binary is accomplished by simply sub-
stituting the appropriate 3-bit configuration for each octal digit.

For instance, the octal number 543 is converted by substituting
for each octal digit as follows.

octal 5 4 3

- binary 101 . 100 011 -
The octal number 543 is, therefore, equivalent to the binary
number 101100011,
The octal number 75327 is similarly converted to binary as follows,
octal 7 5 3 2 7

binary 111 101 011 010 111

The octal number 75327 is, therefore, equivalent to the binary
number 111101011010111.

Convert the following octal numbers to binary.

a.) 75238 Answer:
b.) 718

c.) 543218

d.) 1

8

2,)111101010011
b.) 111001
¢.)101100011010001

d.) 001

1.B.10

Binary to Octal Conversion

The conversion from binary to octal is just the converse of the
octal to binary conversion. The digits of the binary number are
grouped in sets of 3 from the right and appropriate octal digits are
substituted, Zeros are placed preceding the binary number if
necessary to make the bits an even multiple of three.

Converting the binary number 1101110011 to octal we first group
the digits in sets of three from the right as follows.

peom, Lot ok, s
001101110011

In this example two leading zeros were added to provide an even
multiple of three.

Next the appropriate octal digits are substituted.

binary 001101110011
octal 1 5 6 3

The binary number 1101110011 is, therefore, equivalent to the
octal number 1563,

The binary number 110000011 is converted to octal as follows.

binary 110000011

i sl et

octal 6 0 3

The binary number 110000011 is equivalent to the octal number 603.

..9'[_

I.B.10 Convert the following binary numbers to octal.

(Cont.)
a.) 1100110001 Answer: a.) 14618
b.) 10 Answer: b.) 28
c.) 1000011111 | Answer: c.) 10378
d.) 1010101 Answer: d.) 1258
I.B.11 Decimal .to Octal Conversion

Let's assume we wish to convert the decimal number 9543 tfo an
octal number. We'll go through the conversion with a step by step

explanation,
Step 1 Divide the number 9543 by 8.
1192 remainder = 7
8 [9543

This division indicates that the decimal number 9543 contains 1192

eights with 7 left over. As you recall each digit position of an octal

number represents from right to left increasing multiples of eight.

The right-most position represents the number of units. Since the

decimal number 9543 contains 1192 full cycles of 8 with 7 left over, the right-
most digit of the converted octal number is 7.

..9'[_

1.B.11
(Cont.)

Step 2 Divide the number 1192 by 8.
149 remainder = 0
8/ 1192

This division indicates that the number of eight eights or 82 in the
decimal number 9543 is 149 with nothing left over. The remainder
in this division represents the number of full eycles of eight remain-
ing after multiples of 82 are taken out which is in fact the second
position from the right of the converted octal number.

The second position from the right of the octal number is, therefore, 0.

Step 3 Divide the number 149 by 8.
18 remainder =5
8/ 149

This division indicates that the decimal number 9543 contains 18 full
cycles of 83 with the remainder of 5. This remainder represents the
multiple of 8° remaining after multiples of 8° are taken out. This is
the third right-most position of the converted octal number.

The third position from the right of the octal number is 5.
Step 4 Divide the number 18 by 8.

2 remainder = 2

8/ 18

This division indicates that the decimal number 9543 contains 2 full
cycles of 8~ with a remainder of 2. The remainder represents
multiples of 8° remaining after multiples of g% are taken out and is
the fourth position in the converted octal number,

I.B.11
(Cont.)

The fourth position from the right of the octal number is 2.

Step 5

The 2 remaining in the quotient of step 5 is the number of times
the decimal number 9543 cycles through 84.

The fifth position from the right of the octal number is 2.

From steps 1-5 the decimal number 9543 is equivalent to the
octal number 22507, '

Let's go through steps 1-5 once more in a more convenient manner.
We'll perform continuous divisions by 8 and indicate each remainder
to the side as follows.

Remember that each remainder represents a converted octal digit,
the first remainder being the right-most digit, the second the next

right-most and so on,

We'll again convert the decimal number 9543 to octal,

remainder
division1 8 \9543
division 2 8 \1192 7 (right-most octal digit)
division 3 8 1149 0 (2nd octal digit from right)
division 4 8118 5 (3rd octal digit from right)
division 5 8\ 2 2 (4th octal digit from right)
2 (5th octal digit from right)

The decimal number 9543 is, therefore, equivalent to the octal number 22507.

—.8‘[.—

I.B.11
{Cont,)

As one more illustration, lets convert the decimal number 792

to octal.

8\ 792
8 \ .99

8 \12

s\L

The decimal number 792 is, therefore, equivalent to the octal number

1430,

Convert the following decimal numbers to octal,

a.) 38
b.) 999
c.) 9
d.) 522
e.) 6

remainder

[l =N VU R o

Answer:
. 6
a.) 4 8
b.) 1747
) 11

c.) 8

d.y 1012

8

8
e.) 68

I.B.12

Octal to Decimal Conversion

Conversion from octal to decimal can be accomplished by either
representing the octal number as a sum of products and simply

evaluating the summation or more rapidly through a mechanical
procedure of multiplications and additions.

The first way can be illustrated as follows. Convert the octal
number 2357 to decimal.

The octal number can be represented by a summation which when
evaluated yields its decimal equivalent.

0 1
2357 7x8 +5X8+3X82+2X83

8

7Tx1+5x8+3x64+2x512

i

7+40 +1982 + 1024

il

6
12 31 0
The octal number 2357 is, therefore, equivalent to the decimal
number 1263,

The second method of converting from octal to decimal is arrived
at by factoring the equation which represents an octal number as
a summation of products.

be mor cifi b h
To ore specific, an octal number nsnznlno, where nO, nl,

n,, and n, are octal digits, can be represented as a sum of products.

1.B.12 n.nnn

3% % T P 1 2 3

{Cont.)

.-Oz_

n3n2n1n0 = { (81{13 + nz) 8 + nl) 8+n

This equation can be factored out as follows:

0

n x80+n x81+n X82+n x83

This equation sets up and defines the following conversion procedure.

The procedure is as follows:

1.

Multiply the left-most octal digit by 8
Add to this product the next octal digit
Multiply this sum by 8

Add to this product the next octal digit
Multiply this sum by 8

Add to this sum the next octal digit

8n3

+
8n3 n2

(8n3 + n2)8

(8n, + n2)8 +n

3
((8n3 + n2)8 + n1)8

1

1)8 + +
((8113 + n2)8 n1)8] nO

_‘[z—

1.B.12 In order to illustrate this procedure, let's assume we wish o convert

{Cont.) the octal number 22507 to decimal. The procedure is as follows.
Operation Illustration
1. Multiply the left~most octal 2 929 5 ¢ 7
digit by 8 st
£
2. Add the next octal digit to this _25 f
product 18 :
3. Multiply this sum by 8 _ 8 !
144
4, Add the next octal digit to this - __bB¢
product 149
5, Multiply this by 8 __8
1192
6. Add the next octal digit 0
1192
7. Multiply by 8 _ 8 |
9536 1
8. Add the next octal digit 1
9543

The octal number 22507 is, therefore, equivalent to the decimal
number 9543,

_zz...

1.B.12
(Cont.)

Let's convert the octal number 543 to decimal.

543 8
1. Multiply the first digit 81
by 8 40
2. Add the second digit _4¢
3. Multiply by 8 44
.
352
4, Add the third digit _ 8¢
355

The octal number 543 is equivalent to the decimal number 355.
Convert the following octal numbers to decimal.

a.) 12

8
b.) 3108
c.) 5374,
d.) 17

8 e compamerer—

Answer:
a.) 1¢

b.) 200
c.) 2812

d.) 63

I.B.13

I.B.14

The rules for addition and subtraction in number systems, other than
decimal, are essentially the same as those for decimal. The primary
difficulty encountered in performing additions and subtractions in other
number systems involves overcoming decimal number habits, We're

all so accustomed to adding and subtracting in decimal that we are, in

a way, faced with a psychological block when we have to perform these
operations in any other number system. Of course prolonged exposure

to octal addition and subfraction will eventually lead to a high degree

of proficiency. It would become as mechanical or as natural as perform-
ing these operations.in decimal. However, since our use of octal addition
and subtraction will be extremely limited, we'll discuss octal operations in
terms of decimal. In other words, although we'll add and subtract in
octal, we'll think in decimal.

Octal Addition

In performing additions in octal, the same procedure is followed as in
decimal with the following exception. When an octal digit is decimally
added to an octal digit, the sum must be converted to octal if this decimal
sum is larger than or equal to 8, The conversion is given in the following
table.

" decimal sum octal sum
8 : | 10
9 : 11
10 12
11 . 13
12 14
13 7 _ 15

14 : 16

-vz-

1.B.14

{Cont.)

This conversion can be easily remembered by noting that the 6cta1

numbers are two more than the decimal numbers.

Note also that the largest summation which can be performed in-octal

on a digit basis is 7 plus 7.

To demonstrate octal addition, let's add 738 to 57 8’

1. Add 7 to 3 decimally
7+3=10

2. Since 10 is greater than 7, add 2
10+2=12

3. Write down 2A, carry 1
4, Add 7, 5 and the 1 carried over
. decimally ;
. 7T+5+1=13

5. Since 13 is greater than 7, add 2
13+ 2 =15

The octal sum of 73, and 5'78 is 152,.

73
57

w

13
57

own ®

152

I.B.14
(Cont.)

Let's now add 12357 _ and 2505 _ in octal,

8 8

1. 7+5=12 12 is greater than 7

12+2=14
Write down 4, carry 1

2. 9+0+1carry=6
Write down 6, no carry

3. 3+5=8 8is greater than 7

8+2=10
Write down 0, carry 1

4, 2+2+1carry=5
Write down 5, no carry

5, 1+0 =1
Write down 1

The octal sum of 123578 and 2505

Add the following numbers in octal,

358 + 77

is 150648.

8
7.+ 7

8 8

+
254728 2378

75768 + 32608

12357

250?8

12357
2505

64

12357
215058

o 2]

064

123578
25058

5064

123578
25058

150648

Answer:
Answer:
Answer:

Answer:

134

16
257318
13056

93

1.B.15

Octal Subtraction

The rules for octal subtraction are essentially the same as those in
decimal. Again, rather than actually perform the operations in

octal, we'll set up procedures by which the actual arithmetic operations
are carried out in decimal, but yielding octal results.

The priinary rule to remember when subtracting in octal is that when
a digit subtrahend cannot be subtracted from a digit minuend, 8 is
added to digit minuend and 1 is taken away from the nhext digit minuend.

For example, if we wish to subtract 72 8~ 37, octally, our first attempt
is to subtract 7 from 2. Since this can't be éone, we add 8 to 2 and take

1 from the 7 in the minuend next to the 2 and subtract as follows.

2 L 682 610
- 37 3 7 3 7
8
3 3,

The difference between 72 8 and 37 8 in octal is, therefore, 33 g

Let's try another example.

Subtract 157428 - 5558 in octal.

In the first digit position 5 cannot be subtracted from 2, Add 8 to 2
and take 1 from the 4 in the next digit position. Then subtract decimally.

In the second digit position the minuend is now 3, but since the subtrahend
is 5, it cannot be subtracted. Add 8 to 3 and subtract 1 from the 7 in
the next minuend digit position. Then we subtract decimally.

310
15742

555

11
6410
1574%

555

65

...Lz-

I.B.15
(Cont.)

1.B.16

11
6310
The rest is a straightforward subtraction. 15742

555

15165
The octal difference between 157428 and 5558 is 151658.

Perform the following subtractions in octal.

a.) 7532, - 3721,
b.) 354 - 17,

c.) 6657, ~ T7¢

d.) 72222 - 63333

The rules for binary addition and subtraction are essentially the
same as for octal and decimal. In some respects it's even easier

since only two digit characters are ever involved.

Binary Addition

When adding binary numbers we're always adding either 0's or 1's
to each other in each bit position., The following table lists all the
summations which can occur by bit position when adding two binary

numbers.

Both bits can be 0 0+0=0
One bit can be 0, the other 1 1+0=1
Both bits can be 1 1+1=0

Both bits can be 1 plus a carry 1+1+1=1

no carry
no carry
1 carry

1 carry

" Answer:
Answer:
Answer:

Answer:

3611
16
6560

6667

—83_

1.B.16 Assume we wish to add the number 101110 to 011100 in binary.
(Cont.)” ‘

In bit position 1 101110
0+ 0 =0, nocarry 011100
0
In bit position 2 101110
1+ 0=1, no carry 011100
10
In bit position 3 : 101110
1+1=0, 1carry 013100
010
In bit position 4 101110
1+1+1=1, 1carry 011,100
darry 1010
In bit position 5 101110
0+1+1=0, 1carry 014,100
1 : 01010

carry
In last bit position 101110
1+0+1=0, 1carry Ola1s1 00
1 1001010

carry

The sum of 101110 and 011100 in binary is, therefore, 1001010,

—68—

1.B.16 Let's try one more. We'll add 11101 to 01111,

(Cont,)

In bit position 1 11101
1+1=0, 1carry 01111
0
In bit position 2 11101
0+1+1=0, 1carry 01%11
1 00

carry
In bit position 3 11101
1+1+1=1, 1carry 0Ll
7 100

carry
In bit position 4 11101
1+1+1=1, 1 carry Ollyl
L 1100

carry
In last bit position 11101

1+0+1=0, 1carry

T 101100
carry

The sum of 11101 and 01111 is 101100 in binary.
It should be noted of course that these additions have been performed

in detail for illustrative purposes only. The addition is actually
performed in one step.

08

1.B.16
{Cont.)

I.B.17

Perform the following additions in binary.

a.) 110011 + 1 Answer: a.) 110100
b.) 110100 + 111111 Answer: b.) 1110011
c.) 111 + 111 Answer: c.) 1110

d.) 10001 + 11001 Answer: d.) 101010

Binary Subtractions

Although subtraction in binary can be carried out in essentially the
same manner as in decimal, that is, subtracting digit by digit, this
often becomes unwieldy. The reason for this is that since in binary
we are dealing with only the two digit characters 0 and 1, we must
frequently in subtraction borrow through a large number of digit
positions containing zero in the minuend. This can cause some
difficulty and confusion,

As an alternate approach, the difference between two binary numbers
can be found by complementing the subtrahend, adding this to the
minuend, and then adding any resulting carry. . This is particularly
suitable to binary numbers since the complement of a binary number
is found by simply replacing 0's with 1's and 1's with 0's,

I.B.17
(Cont.)

b.)

This method of binary subtraction is
Subtract in binary 110001 - 101111,

The minuend is 110001.
The subtrahend is 101111,

Complement the subtrahend
Add the minuend

Carry 1

Add the carry

Difference

illustrated in the following examples.

010000
1110001
000001
1

10

The difference between 110001 and 101111 is, therefore, 10 in binary.

Subtract 100101001 from 111100000 in binary.

The minuend is 111100000.
The subtrahend is 100101001,

Complement the subtrahend
Add the minuend

Carry 1

Add the carry

Difference

The binary difference between 111100000 and 100101001 is, therefore, 10110111,

011010110
1111100000
010110110
1
010110111

¢.) Subtract 101 from 111010000 in binary.

1.B.17
é_g {Cont.) v
1 The minuend is 111010000,
The subtrahend is 000000101,
Complement the subtrahend 111111010
Add the minuend ;111010000
111001010
1
111001011

Carry 1
Add the carry

Difference
The difference between 111010000 and 101 is, therefore, 111001011,
Answer: a,) 101001110

Answer: b,) 001111

Perform the following subtractions in binary.
Answer: c.) 111

a.) 101010101 - 111
b.) 111000 - 101001 .
c.) 10111 - 10000
Answer: d.) 1011

d.) 1100 - 1

.—88.—

I.B.18

Fractional Conversions

Conversion to Decimal

Before concluding our discussion of number systems, some
brief mention will be made of fractional numbers,

We are all familiar with fractional numbers in the decimal
number system and recognize that digits to the right of the
decimal point define the fractional portion of the number,
When we represent a decimal number as a sum of products,
we find that the products obtained from digits to the right of
the decimal point are a logical extension of the way products
are obtained from digits to the left of the decimal point. This
can be illustrated by representing the decimal number 29. 35
as a sum of products.

1 -1 -
29.35=2x10 +9x100+3x10 +5x102

From this example, it can be seen that products are formed
with digits to the right of the decimal point by multiplying
the digit by 10 raised to the negative power of its position
to the right of the decimal point.

Analogously, fractional numbers in other number systems
are represented by sums of products in the same way.

In the octal number system, products are formed with
digifs to the right of the octal point by multiplying the digit

by 8 raised to the negative power of its position from the

octal point.

?8

I.B.18
(Cont.)

The octal 'number 43,24 is represented by the following sum
of products. ‘

| S
43.248=4x81'+3x80+2x8 +4x82

Note that the conversion of the octal number 43, 24 to decimal
is simply the evaluation of the sum of products as follows:

43,24 = 4x8+3x1+ 2 + "-1-2 = 82+3+ .25+ .0625 = 35,3125
8 8 8 10
Binary digits to the right of the binary points are handled in
a similar manner. The binary number 101.11 is represented
by the following sum of products.
10111, = 1x2+0x2t+1x2%+1x2 v1x27?
Represent the following numbers as sums of products. Answer:
-1 -
a.) .9510 a.) 9x10 +5x10 2
1 -
b.) 83.2;, | by sx10r +3x100+2x107
c.). .53y c.) 5x8 L +3x8 >
-1 -
d.) .028 d.) 0x8 +2x82
e.) T.1g e.) 7x8’+1x8
£) 11, | £y 1x2t+1x2%+1x27"

g) .01 gy 0x2 te1x2

I.B.18 Decimal to Octal
(Cont.)

Fractional decimal numbers are converted to octal by successive
multiplications by 8. The decimal fraction is multiplied by 8 and
the integer portion becomes the first octal digit. The fractional
portion of the product is then multiplied by 8 and the integer result
becomes the second octal digit. This is continued as far as desired.
The following example illustrates this process.

Convert the decimal fraction . 596 to octal.

Step 1 Multiply by 8. | .596
4 is the first converted octal 8
digit after the octal point. 768
Step 2 Multiply the fractional portion by 8, .768
6 is the second octal digit. 8
@s. 144
Step 3 Multiply the fractional portion by 8, L144
1 is the third octal digit. 8
{ ﬁ 152
Step 4 Multiply the fractional portion by 8, L1592
1 is the fourth octal digit. 8
{ﬁ 216

The result so far is . 59610 = .46118

By continuing this process the converted octal number can be carried
ouf to as many places as desired,

Convert the following decimal fractions to octal,

a.) .510 Answer: a.) '48
b.) .312510 b.) .248
c.) .062510 e.)-.,048

98

I.C

I.C.1

Basic Computer Concepts

Although the base of a number system can be any number equal to
2 or more, decimal, octal, and binary number systems are of
particular importance when related to computers.

The decimal number system is of importance simply because that's
the system we're all used to and expect to use in basic communica-
tion with the computer.

The binary number system is the number system of a computer,

The octal number system is a convenient system in which to
represent numbers in the binary number system.

The three number systems of particular importance in relation

to computers are , : ., and . Answer:

decimal
octal
binary

I.C.2

Why is the binary number system the number system of computers?

The binary number system as we now know contains only 2 digits.
This is significant!

How can the 2 digits 0 and 1 be represented in the binary number
system?

Of course we can just write it, but physically how can we represent

it?

How about up and down--up is 1 and down is 0.

How about wet and dry--wet is 1 and dry is 0.

White and black, open and closed, right and left, full and empty,
on and off--all of these conditions can be used to represent a

0 and 1 in the binary number system.

A computer uses an on and off condition to represent the binary
digits 0 and 1, 1 is an on condition and 0 is an off condition,

A binary digit in a computer is called a bit--a contraction of the
words binary and digit.

The binary digit 0 in a computer is represented by an

condition, Answer:
The binary digit 1 in a computer is represented by an Answer:
condition,

A bitis a . Answer:

off

on

binary digit

1.C.3

1.C.4

 Specifically, a bit position in a computer is considered in an

"on' state when magnetized and in an "off" state when non-
magnetized.

As you recall, a number is defined not only by the number of
digits contained in its number system, but also by digit position.

Although we've explained how a computer recognizes the binary
digits 0 and 1, we have not as yet discussed bit positions--an
essential requirement for representing a number.

In a computer a certain number of bit positions are assigned to
a "computer word". The number of bit positions contained in a
computer word vary with computers. The CDC 6600 has a com-
puter word made up of 60 bit positions--a word in the CDC 3200
computer contains 24 bit positions--the UNIVAC 1108 and IBM
7094 have computer words containing 36 bit positions.

The number of bit positions contained in a computer word estab-
lishes the magnitude of the number that can be represented by
that computer word. The more bif positions assigned to a com~
puter word, the larger the number that can be represented.

A computer word is composed of a fixed number of

Answer:

bits or bit
positions

_68.—

I.C.5

I.C.6

Computer words are the basic structure of any digital computer,
Computer words can be recognized in one of two ways by a com-~
puter, as instructions or as numbers.

The instruction repertoire of a computer is a function of computer
design. Every digital computer has its own set of basic instructions
defined in terms of a fixed bit configuration within a computer word.

Computer words are recognized by computers as either Answer:

or

Before we discuss in any more detail the role played by computer
words, let's back away for a moment and discuss, in general, how
a computer operates.

An analogy can be made between computers and the human brain.
The term ''electronic brain" is commonly applied to computers and
justifiably so. A computer is composed of memory cells which can
retain or provide information through a suitable arrangement of
instructions. This arrangement of instructions is called a computer
program.

This is not dissimilar to the brain. It too, in a sense, has available
memory cells which through the learning process become programmed
to perform various functions. '

The computer, like the brain, requires input data to operate on. Input
data are transmitted to the brain through 5 senses which are collected
by physical devices hooked on to the body--eyes, ears, nose, mouth, etc,

instructions,
numbers

_Ov—

I1.C.6
(Cont.)

"So too.with a computer. Physical devices such as optical scanners,

punched cards, paper tape, magnetic tape, magnetic disks, -etc.
are all available for transmitting information to the computer.
These are called input devices-~devices transmitting information
to the computer,

Output devices used by the brain include speech, writing, body
movement, facial expressions, etc. Output devices available to
computers include printers, plotters, magnetic tapes, oscilloscopes,
typewriters, ete,

So, in order for a computer to work it must have:

1. input capability
2. a resident computer program
3. output capability

Let's follow through the steps taken when a problem is posed for
computer solution.

To make these steps more meaningful we'll assume an actual problem
and illustrate the steps taken in terms of this problem.

Assume the following problem:

Given a quadratic equation 0=c+12x - 15x2, solve for x for all values of
¢! from 1 to 100 in steps of 1,

I1.C.6
(Cont.)

Step 1

Surprisingly enough, the first step is to solve the problem. It must
be remembered that computers do not solve problems, programs do!
All computers do is to provide a means by which instructions can be
carried out rapidly, repetitively, and consistently. The programmer,
knowing the instructions available to a computer, must decide how a
problem is to be solved. A single problem can be solved in many ways
on the same computer. The method of solution is left to the discretion
of the programmer.

Problems are solved by . Answer:

Computer programs provide instructions to be carried out by . Answer:

The solution to a quadratic equation, as we recall from high school

algebra is:
bt Yb: - dac

2a

Substituting values from our sample quadratic equation, we find the
solution to be:

x = -12 £ \l 144 + 60c

~30

This is the solution to the problem and it is this equation that we will
program. It is very important to realize that solutions are programmed,

not problems,

computer programs

computers

—zv-

1.C.6
(Cont,)

Step 2

This step establishes the logic to be employed in solving the problem.
It is at this point that a flow chart is drawn to illustrate the method of
solution. Flow charts will be discussed in more detail further on in
the course.

The solution to our sample problem could be flowcharted as follows.
1t should be noted here that this flow chart does not conform to any
standard convention, but is presented for simple illustrative purposes.

Set the value

1.C.6
(Cont.)
ofctol
Calculate
__-12 + Y 144+460c¢
- Xl = -30)
-12 - § 144+60c
X =
0 -30
/
Print ¢, %,, %,
N/
!
= Add 1 to "c"
Test "c"
no
Is "c¢" greater
than 1007

=

\/
STOP

1.C.6
{(Cont,)

If you examine this flow chart, you'll notice that in order to solve
our problem we must

perform the calculation

printout the results

repeat the calculation and printout for a total
of 100 values of ¢,

LN
N

These are, in general terms, the functions to be performed by
the program. How these functions are specifically performed
depends on the instruction repertoire of the computer or the
computer language being used.

For now let's accept the fact that somehow instructions can be
written to perform all the functions .designated in the flow chart
and let's see what happens next.

Step 3

Now that we know how we are going to solve our problem, we are
prepared to write our program on coding sheets. Programs are
written on coding sheets for convenience since they indicate how our
written instructions are to be punched onto cards.

Coding sheets are designated to simulate computer cards. On a
coding sheet each line is divided into 80 columns corresponding

to the 80 columns contained on a card, What is written on one line
of a ceding sheet will be punched in the designated columns, on one
computer card.

_gv-—

1.C.6 How do we know what columns to write our instructions in?
(Cont.)
This is strictly a function of the rules of the language in which
we're writing, In FORTRAN very specific rules are defined
with respect to the columns in which information can be punched.
This will be discussed later on in the course.

Computer cards contain columns. Answer: 80
A line on a coding sheet is divided into columns, Answer: 80

Information written on 3 lines of a coding sheet will be punchéd
onto how many computer cards ? Answer: 3

Back to our sample problem! We're ready to write the program.
Let's take the plunge and write the program in FORTRAN--a
preview of things to come. In our program, the symbol A is used
to represent ¢ in the formula,

FORTRAN CODING FORM

g——-t - C.for Comment

ate- |

{nentNgéq FORTRAN STATEMENT 50! - ol
)L l=llllllllll]llllllllllllllIllllllllllll!lllll‘ bl
k] L2 M8 QRT(L 44, #6,0. *AD) /=800 01 14 1] LJllll IS U O Y N W
I K2=(c12.-SQRT(144.#60. *A)) /(=80.0), 1. .1l]
Lo | PRINT2 A XL X2 b b by s L abay gl | I W U U TS W0 B
Ll dg Y-\t YA SN AN NS A N S N U S N N U AN A S A B A AN N S AR A ANE IR Lo v dat 11
e B FRGALLE 00,3, 1IGO JTO1 1y o by v v d ey v L e b ad Lo a1y o
L LISTOP ey b v by b s b b Lo v La vy
1 2 (FORMAT(B H20.2)) 4 4 by b v el u gyl iyl vy | TR ST B S
Ll END | st b boav e b v by ea v sl aaaa [lllj.l;.nl

—.9%_

1.C.6
(Cont.)

These 9 lines of FORTRAN instructions constitute an "honest to
goodness' FORTRAN program, It follows quite faithfully the logic
we've outlined in our flow chart.

Don't panic now! Recognize this for what it is--a preliminary
exposure to 2 FORTRAN program. It is meant to give you some
idea of what a FORTRAN program looks like, ,

Let's examine this program line by line and get a general idea of
what these instructions mean, Whatever you get out of this pre-
liminary exercise will prove worthwhile as an aid.in later reading.

Line 1 of our program, A =1, instructs the computer to assign a
value of 1 to the symbol A.

Line 2 performs the calculation and assigns the result, the first
root of the equation, to the symbol X1,

Line 3 performs the calculation and assigns the result, the second
root of the equation, to the symbol X2,

Line 4 prints out A, X1, and X2 on a printer attached to the computer.
The results are printed out on the page according to a format defined
on line 8, Line 8 simply tells the computer how to physically print out
results on the output page.

Line 5 adds 1 to the value of A. A will now be 1 larger than it was
before.

Line 6 tests to see if A is less than or equal to 100. If it is, it tells the
computer to go back to line 2.and repeat lines 2, 3, 4, and 5 until the
value of A is greater than 100, When A is greater than 100, the computer
is instructed to go to line 7.

1.C.6
(Cont.)

Line 7 tells the computer to stop executing instructions for this
program.

Line 8 provides format instructions for the print instruction on
line 4.

Line 9 contains an instruction, END, which indicates to the
computer that this is the last card of the program.

After the program has been written on a coding sheet, the next
step is to have the program punched onto computer cards, our
means of communication with the computer.

Step 4

The computer cards are now placed in the card hopper of the card
reader attached to the computer. Some buttons are pressed on the
computer console and each card is sequentially read by the card reader,
information from each card being transmitted by the card reader to the
computer which in turn stores the information into appropriate memory
locations.

After all of the program has been read into the computer, the computer

is instructed to execute the instructions of the program which now resides
in the computer. As a result of the execution of the program, answers are
output by the computer on the printer.

—8?—

1.C.6
(Cont.)

Summarizing all of this we find that in order to solve a problem on
a computer, four basic steps are required. They are: o

Step 1 The solving of the problem

Step 2 The flowcharting of the solution

Step 3 The writing of the program on coding sheets and the
punching of the program instructions onto computer
cards.

Step 4 The input of information contained on the cards to the

computer and the execution of the program.

A problem must be before it can be programmed.
A should precede the writing of a program,

A program is written on .

From coding sheets instructions are onto computer

eards.

Computer cards are read and transmitted to a computer by
a .

Before a program can be executed, the cards containing the
program must be .

Answer:
Answer:

Answer:

Answer:

Answer:

Answer:

solved
flow chart

coding sheets

punched

card reader

read into the
computer,

I.C.7

I1.C.8

The address of a computer word is the location of the computer word
in memory. All computer words have an address in computer memory,

Computer instructions are contained in computer words in successive
addresses and are normally executed sequentially, calling for data, as

necessary by address, from other areas of memory.

The location of a computer word in memory is called the

of the computer word. Answer:

As it turns out, machine language programming can prove quite tedious.
This has led to the generation of program processors which convert
programs written in one language to machine language programs.

One type of program processor is called a compiler., FORTRAN
compilers fit into this category.

A program written in FORTRAN is called a source program. If is on
this source program that the FORTRAN compiler operates in order

to produce a machine language program called the cbject program.

Before a FORTRAN program can be executed, it must be converted

to a machine language program by the FORTRAN . Answer:

A FORTRAN program is called a

The machine language program generated by the FORTRAN compiler

is called the program, Answer:

program, Answer:

address

compiler

source

object

_Og—

I.C.9

Assuming that cards containing a FORTRAN source program
followed by appropriate data are prepared for input to the computer,
the following steps are entered into; (Note: automatically, as far
as the programmer is concerned).

1.) The FORTRAN compiler is read into memory.

2.) The cards containing the FORTRAN source program
are read into memory and converted to a machine
language object program by the FORTRAN compiler,

3.) The machine language object program is then
executed.

The FORTRAN compiler performs quite a feat for the programmer
when one considers the amount of bookkeeping, writing, and complexity
normally found in machine language programming.

1t should be added here that in addition to relieving the programmer of
machine language programming, the compiler also provides a large
store of diagnostic messages for the programmer to help him find
program errors, commonly called "bugs". The act of finding and
correcting errors in a program is called "debugging a program'.

_'[g-a

I.C.10

Communication with the computer on a computer word basis is
accomplished by using octal numbers., That is, if one desires to
find out what is contained in a specific computer word or if one
wants a computer word to contain a specific binary number, octal
numbers are used.

Octal numbers are used because they are equivalent to binary
numbers, each octal digit representing three binary digits. Twenty
octal digits are required to represent a 60-bit CDC 6600 computer
word,

For illustrative purposes, let's agsume we're working with a 12-bit
computer word. This 12-bit word requires 4 octal digits to represent
it; again, each octal digit covering 3 bits,

Let's represent the binary number 111011001010 in octal. This is done
by taking the bits in sets of three and substituting the appropriate octal
digit for each set as follows:

binary number 111 011 001 010
Nt Nevctm, gt R g, et
octal number 7 3 1 2

The octal number 7312, therefore, represents the binary number
111011001010,

Trying it the other way we find that the octal number 2176 represents
the binary number 010001111110, This is obtained as follows:

octal number 2 1 7 6
P P Y N e N

binary number 010 001 111 110

Write the following binary numbers in octal.

1.C.10
(Cont.)
101001
110001000
100001111010

Write the following octal numbers in binary
42
730

7

Answer: 51

Answer: 610

Answer: 4172

Answer: 100010

Answer: 111011000

Answer:; 111111111111

I.C.11

Character information, such as letters, symbols, and numbers, is
recognized by computers in a special way. It should be realized that
the use of character information is extremely important, Not only is
a computer called on to perform calculations, but also it is required
to process character information in order to provide messages, to
label information, to identify items, ete.

The way a computer is designed to recognize characters is by means

of a 6-bit code. The CDC 6600 defines its 6-bit coding of characters
by a console display code. Some other computers call their character
coding BCD which stands for binary coded decimal. This character
coding is not standard so that a 6-bit code which represents a character
on one computer is not necessarily the code for the same character on
another computer.

Let's cite an example, A CDC 6600 computer word containing the word
"TABLE" in console display code would contain the following.

55555555552401021405 (octal)

[P SN DU TEE (DU DR U TS T B

bbbbbTABLE

These 20 octal digits represent the 60 bits contained in a CDC 6600
computer word.

—:&g.—

1.C.11 A table is provided at the end of the CDC FORTRAN Reference Manual
(Cont.) which lists the console display codes and the characters to which they
are equivalent. From this table the following was obtained.

Character Console Display Code

blank 55
T 24
A 01
B 02
L 14
E 05

Looking at the computer word containing the word "TABLE" we find

that the first 6 bits are 55_ (binary 101101) which is a blank in console
display code., This is followed by four more blanks, After the five
blanks comes the letter "'T"'. in console display code a 24_ (binary N
010100), followed by an "A", in console display code a 018 (binary 000001),
then a "B", "L", and finally "E".

I.C.11
(Cont.)

Write the following words in console display code for the CDC 6600 using
the table of codes provided. Use leading blanks to fill up the 60-bit word.

Console Display Code

Character

ACHE
CHIEF
BAGGAGE

01
02
03
04
05
06
07
10
11
55

SomadEYdow e

blank

Answer: 55555555555501031005
Answer: 55555555550310110506
Answer: 55555502010707010705

—99_

GLOSSARY

The location of & memory eell or & symbol representing that location.

Address
ADP Automatic Data Processing
Algorithm A rule of procedure for solving a problem.

Allocation The allotment of storage for data and other information.
This word is a contraction of Alphabetiyc—Numeric and refers to the character set consisting of
the letters of the alphabet and the ten decimal digits.

Alphanumeric
The representation of numerical quantities by means of physical variables; e. g., translation,
Contrasted with "digital",

rotation, voltage, or resistance.

Analog
AND A logical operation defined in Boolean algebra.
Argument The independent variable of a function.
Array A series of items arranged in a meaningful pattern.
Assemble To translate a program written in a synthetic language into machine language and to assign storage
for instructions and data.
Auxiliary Equipment not under direct control of the central processing unit,
Equipment
BCD Abbreviation for Binary-Coded-Decimal, (See sectionI.C.11)
Bit Contraction of binary digit.
Block A group of consecutive records, words, or characters handled as one unit.
Movement of a number of consecutive computer words from one position in storage to another.

Block Transfer

Boolean

Buffer Storage
Bug

Byte

Calling Sequence
Card

Card Punch

Card Reader
Card-To-Tape
Central
Processing
Unit

Chain
Checkout

Checksum

GLOSSARY
Related to the logical arithmetic developed by George Boole,
A device which temporarily stores information during a transfer of information,
An error in a program,
A term indicating a fixed number of consecutive binary digits,

The set of instructions used to link a subroutine with a main routine.

A machine processable information storage medium of special qualify paper stock.

A device to record information in cards by punching holes in the cards to represent letters,
digits, and special characters,

A device which senses and translates info internal form the holes in punched cards.

Refers to the transfer of information from punched cards to magnetic tape.

That component of a computing system which contains the arithmetic, logical, and control
circuits of the basic system.

A series of items linked together.

The application of diagnostic or testing proced_ures to produce a properly working program.

A summation of digits or bits used primarily for checking purposes.

—89-.

GLOSSARY
A program processor which translates from a synthetic language such as FORTRAN to machine

Compiler
language.
A number consisting of a real and an imaginary part.

Complex Number
(See section 1. C.11)

Console Display
A control card provides information to the monitor or compiler.

Code
Control Card
Core Storage A form of high speed storage using magnetic cores.
Data Processing Manipulating data to achieve desired results.
The process of transforming raw data to a form more suitable for analysis. This frequently

Data Reduction
requires smoothing, adjusting, scaling, and ordering of the raw data.

Same as checkout.

Debug
Deck A set or pack of cards.
Diagnosié The process of locating and explaining errors in a computer program.
Digitize To convert from analog to digital form. :
Disk Storage A storage device which uses magnetic recordings on ﬂat'rotating disks.
Display Unit A device which provides visual representation of data.
Pertains to the quantity containing twice the number of digits normally carried.

Double Precision
A term which refers to more than one punch in any one card column.

Double Punch

-69—

Downtime
Dump

EDP

End of File Mark

File

File Protect
Ring

Fixed Point
Number

Flag

Floating Point
Number

Flow Chart
Format

FORTRAN

Hardware

Header Record

GLOSSARY
The elapsed time occurring due to machine failure,
To print out the contents of part or all of some storage medium,
Abbreviation for Electronic Data Processing.
A one character indicator on tape designating an end of file.

A systematic collection of information often consisting of a number of records.

A ring which when placed on a tape reel enables the tape to be written on. With this ring off,
the tape can be read, but not written on.

A fixed point number in FORTRAN refers to an integer.
A symbol used to provide a signal or indication of some condition (e. g., good, bad, or
questionable data).

A number which is represented by the digits of the number plus an indicator denoting the location
of the decimal point,

A graphic representation of a problem in terms of data flow, procedures, methods, etc.
A predetermined arrangement of characters, fields, lines, punctuation, page numbers, etc.

A contraction of the words "formula translator'., This algebraic type language is widely
used and can be compiled on many different computers,

The mechanical, magnetic, and electronié components of a computer.

A record containing identifying or explanatory information for a group of records which follow.

—09—-

Hollerith Code

Initialize
Input

Input-Output

Iteration
Left Adjusted
Library Routine

Linear
Programming

Location

Logical
Operation

Loop

Magnetic Core

Mask

Matrix

GLOSSARY

An encoding scheme by which any one of a set of 50 characters may be represented in one column
of a card. Named for Herman Hollerith, the originator.

To set certain counters, switches, or addresses at specified times in a computer program.

Information transferred from auxiliary or external storage into internal storage.

- Commonly called I/0O which refers to equipment or data involved with the information transferred

into the computer and information transferred out.

The continued repetition of the same operation or group of operations,
The placing of information such that any unused area is on the right,
A routine placed on file and available for general use.

A technique used in mathematics and operations research to find a best solution for a certain
class of problems.

A place in storage where a unit of data may be stored.

An operation or instruction which operates on the independent bits of a computer word.

A coding technique in which a group of instructions are repeated.

A small doughnut-shaped ferrite designed and constructed for on or off magnetization and
used to store information in the computer,

A fixed word pattern of bits used for the purpose of selecting or eliminating bit positions from
other words.

An array of quantities in a prescribed form. The elements are usually arranged in rows and
columns,

GLOSSARY
Memory A memory is a device in which information can be stored. The term "memory" is normally
used with reference to quick access devices such as magnetic cores.
A mnemonic in coding refers to a symbol or word chosen to be similar to the name of the
, ete.).

item it represents (e. g., THETA for 6, TWOPI for 27

Mnemonic
Mode A computer system of data representation; e. g., the binary mode.
Modulo A mathematical operator which yields the non-negative remainder function of division.
Monitor A program processor which exercises supervisory control over some other program or
collection of programs.

Solution of a problem by coordinated action of several computers.

Multiprocessing
Multiprogramming Solution of several problems simultaneously on a single computer.

Including a routine or block of data within a larger routine or block of data.

Nesting
The representation of a quantity by a positional value to a given number base.

Number System
Numerical Analysis The study of methods for obtaining numerical answers to mathematically stated problems.

Object Program The machine language program which is the output after translation from the source program.
Pertaining to the operation of input-output devices or auxiliary equipment not under direct

control of the central processing unit,

Off-line
Operation of an input-output device as a component of the ‘computer under programmed control.

On-line
A computing installation at which computer programming is performed by any qualified employee,

Open Shop

..zg...

OR
Output
Parameter

Parity Check

Printer
Program

Reader

Real Number

Record

Record Gap

Right Adjusted

GLOSSARY

A logical operation defined in Boolean algebra.

Information transferred from internal storage to external storage or to an output device.

A quantity to which arbitrary values may be assigned.

A special form of validity check in which one bit of the binary code is reserved as a parity bit

and is set equal to either zero or one to make the total number of one-bits in the code consistently
even (even parity check) or consistently odd (odd parity check).

A device which prints output,
A series of instructions written in order to solve a problem on a computer,

A device which senses information from one form of storage and converts and transmits it to
information in another form of storage.

A real number in FORTRAN refers to a single precision {(as opposed to double precision) floating
point number in the real domain.

A group of related facts or fields of information treated as a unit. On magnetic tape, separated
by a record gap.

A space between records on a magnetic tape,

The placing of information such that any unused area is on the left.

Routine

Scratch Tape
Shift

Sign Bit

Sort

Source Language
Storage

Subroutine

Table
Track
Transfer

Turnaround
Time

Word Length

GLOSSARY

A series of instructions which carry out a well defined function.
A magnetic tape used for intermediate results rather than for input, output, or filing,
A movement of bits, digits, or characters to the left or right.

A bit stored with a binary number to indicate the algebraic sign.

To arrange the items of a file in a specified order.
The form in which the program is written on the coding sheet.
A general term for any device capable of retaining information,

The set of instructions necessary to direct the computer to carry out a well defined mathematical
or logical operation at the request of another routine.

One or more lists containing organized information,
A single longitudinal path as on magnetic tape.

An instruction which can alter the regular sequence of instruction execution,

The amount of time which elapses from submission of inputs for a computer run until the output
for that run is available.

The number of bits or characters handled as a physical unit by the computer.

"PARTH

?9

ImI.A.1

FORTRAN Arithmetic Statements

The FORTRAN arithmetic statement is designed to have the form of
a mathematical formula. The formula a =x +y, for example, is
written in FORTRAN as A =X + Y.

There is one arithmetic operation performed in the statement
A=X+7Y. Itis

Addition is one of the basic arithmetic operations. Others are
subtraction, multiplication, and division. The FORTRAN language
uses the symbol + to indicate addition and -, *, and / for subtraction,
multiplication, and division, respectively.

Each of the following FORTRAN expressions use two basic arithmetic
operations. Indicate the missing operation in each case.

A+B+C addition and

A+B-C addition and

A-B/C subtraction and

A*B-C and subtraction

The FORTRAN expression A * B causes the value of A to be multiplied
by the value of B. The expression A * B - C will multiply the value of
A by the value of B then subtract the value of C from the result.

if the value of A is 20.0, B is 5.0, and C is 1.0, the result of the
expression A * B - C is

Answer:

Answer:

Answer:

addition

addition
subtraction
division
multiplication

99.0

II.A. 4

I.A.6

The = in the FORTRAN arithmetic statement means to take the
result of the expression on the right and assign that value to the
symbol on the left. The symbol on the left then retains that value
until it is assigned a new value by another statement.

If the value of A is 3.0, then the value of X after the statement
X = A is 3.0. If the value of A is 8.0, what is the value of X after

the statement X = A + A? _ Answer:

Another basic arithmetic operation permitted in FORTRAN is
exponentiation. This operation is indicated by two *'s. The
expression A * * K raises A to the Kth power.

List the symbols which correspond to the five operations listed
below. These symbols are called operators.

addition Answer:

exponentiation
multiplication
subtraction
division

If you had any difficulty with the last problem, start PART II over
again. See your advisor if it is not clear after the second pass
through the material. If you understand the material to this point,
you may continue.

16.0

~99~

IM.A.8

TM.A.9

A FORTRAN statement may contain several different operations.

For example, the statement D=X* * 2 + Y * * 2 + Z * * 2 contains

both exponentiation and addition. The statement D=X*X +Y*Y+Z * Z
is equivalent to the one above but contains multiplication and addition.

The statement A + D * * 3 + B / X contains the three operations
, , and division.

The order in which the operations are performed in a particular
FORTRAN expression is determined by a few basic rules. The
importance of knowing these rules is illustrated by the FORTRAN
expression W* G - P/ Q * R. Without 2 definite order, this
expression could represent any of the following arithmetic formulas.

1)
2)
3)
4)
5)

(wg - p) / (a¥)
w (g - p) / (qr)
(twg-p)/a)r
wg-(p/Qr
wg - (p / (ax))

A FORTRAN arithmetic expression must represent one and only one
arithmetic formula. Therefore, it is necessary to have a set of rules
which govern the

in which the calculations are performed.

In 2 FORTRAN expression, all exponentials are evaluated before the
other operations are performed. The exponentials are evaluated in the
order they occur from left to right.

In the expression X * * 2 + D * Y , the first operation performed

1S

Answer: exponentiation
’ addition

Answer: order

Answer:; X ¥ % 2

—Lg—

I.A.10

II.A. 11

M.A.12

After all exponentials are evaluated, the multiplications and divisions
are then performed in the order they occur from left to right.

In the expression A * X - Y / D, the second operation performed

is . Answer:

After all exponentials, multiplications, and divisions have been
performed, the additions and subtractions are performed in the order
they occur from left to right. Thus, the three-level hierarchy of
operations is:

1) exponentiation
2) multiplication and division
3) addition and subtraction

Indicate the first operation which will be performed in each of the
following statements:

]

T ——— LTI

i

B*X**2-Q/D
Y**Q+7%%2
= A*B/C

Sl Ne i
i

If you had no difficulty with the last problem, give yourself a gold
star and go to II.A.14, Otherwise, continue.

R+B-~C Answer:

Y/D

R + B (addition)

X * * 2 (exponentiation)
Y * * 2 (exponentiation)
A * B (multiplication)

_89—

I1.A.13

Now let us consider the operational hierarchy of each statement
in II. A, 11,

1.) A=R+B-C

There are no exponentiations, multiplications, or divisions. 'Thus,
the only operations involved all belong to the third level of the
operational hierarchy and are performed in the order encountered
from left to right.

2.) C = B¥X**2-Q/D

In this example, there are operations from all levels of the hierarchy.
The operation which is performed first in this case is the exponential,
X **% 2, Next the multiplications and divisions are performed in the
order they occur from left to right. Next the additions and subtractions
are performed. In this case only one subtraction is encountered.

8.) X = Y**x2+7Z *%2

In this case, there are two exponentials to be performed and they are
carried out in the order they occur from left to right. Thus, the opera-
tion Y * * 2 is performed first. After the second exponential, Z * * 2,
a search is made for multiplications or divisions. Since there are none,
a third scan is made to find additions and subtractions. Thus, the last
operation is the addition of the two exponentials,

4.) Y = A*B/C

Here all operations belong to the second level of the operational hierarchy.
Therefore, they are performed in the order they occur from left to right.
In this case, we have the operation A * B. The next operation divides this
result by C.

IT.A.14

II.LA.15

T1.A.16

The statement B =X / A * C always corresponds to the arithmetic
formula b = —z .¢ . This is true because multiplication and division .
have equal priority and the division occurs first in the statement.

Write the arithmetic formula which corresponds to the FORTRAN

statement X = G/ T* *2* H. Answer::x=gz-h
t

Parentheses may be used to change the order of operations.

Think about expressing s = o 2sa FORTRAN statement.

The FORTRAN statemeng S= A/(D*B) corresponds to the

arithmetic formul T e,
ic formula s W

The order in which the operations are performed may be changed by

the use of Answer: parentheses

The use of the parentheses in FORTRAN expressions is essentially
the same as the use of parentheses in arithmetic formulas. The
first and most important thing to remember is that parentheses must
be used in pairs.

The number of left parentheses in 2 FORTRAN statement must equal .
the number of parentheses. Answer: right

—OL—

M. A.17

I.A.18

M.A.19

Nesting of parentheses is permitted. This means that a pair
of parentheses may lie entirely within another pair. When
parentheses are nested, the expression within the innermost
pair of parentheses is evaluated first.

In the statement A = ((B - C) * D) /R, which operation is
performed first?

The expression within the innermost set of parentheses is
evaluated according to the hierarchy of operations discussed
earlier.

The three levels of the operational hierarchy are .
and , and and .

Once the value of the expression within a set of parentheses has
been obtained, that value is then used in evaluating the expression
contained within the next outward set of parentheses. '

The expression (X + Y) / (A + D) will add the value of X to the
value of Y and then divide the result by the sum of
and D. ‘ N

Answer: B-C

Answer: exponentiation,
multiplication, division,
addition, subtraction

Answer: A

—‘[L—

II.A, 20

I.A.21

II.A.22

It is usually obvious when parentheses are needed to obtain
the desired result. Some situations arise, however, when
it is not immediately apparent that parentheses are required.
A good rule to follow is to use parentheses if there is any
doubt. No harm results from extraneous parentheses as
long as they are used in a meaningful way.

Pick the expression where a set of parentheses are used
incorrectly. ‘

1. A+By*C 2. ((A+B))*C 3%, ((A+B)*)C Answer:

If your answer was 1 , go back to II,A.14. If your answer
was 2 , remember that too many parentheses are not harm-
ful as long as the expression is meaningful. Expression 3
has no meaning and is, therefore, an incorrect use of
parentheses,

One common error in FORTRAN is the omission of the multi-
plication symbol. In FORTRAN, all operations must be
indicated by the use of the proper symbol,

The expression (A + B) (-D) is incorrect because no operation

appears between the two parentheses. Answer:

symbol

zL

II.A.23

O.A.24

II,A,25

The expression (-D) is a proper use of the negative operator.
Care must be taken, however, to avoid the use of two operators
next to each other.

The statement X = -A+B is correct. The expression R * - S is
not correct. Write the expression in its correct form.

Previously, only one letter has been used to identify each
variable. If we continue in this manner, a program would be
restricted to twenty-six variasbles. To remove this restriction,
each variable may be defined with any combination of 1-7 char-
acters (numerals or letters) beginning with a letter.

A variable name must not contain more than char-
acters. The first character of a variable name must always
be 2

There is one exception to the above rule. The letter O followed
by six numerals is not a valid variable name (to be explained later).

Pick the three incorrect symbols (or identifiers) from the
following list:

? ’

1) AX

2) BLC3

3) CZKRILPS
4) 0342312

5 12AC

Answer: R*(-8)

Answer:

Answer:

7, letter

IILA. 26

ILA. 27

II.A.28

II.A.29

If you answered II. A. 25 correctly, go to TI. A, 28.
Otherwise, continue.

The third symbol is not correct because it has more than
seven characters. The fourth begins with the letter O and
is followed by six digits. The last begins with a numeral,

It is often useful to make the program identifiers resemble
the actual quantity. An illustration is given in the following
computation of centripetal force.

FORCE = MASS * (VEL * * 2/RADIUS)

In the above statement, the numerical value of FORCE be-
comes if MASS is 16, VEL is 10 and RADIUS
is 5.

Up to now, we have only considered individual FORTRAN
statements. In practice, many statements are usually required
to solve a particular problem. Unless otherwise directed by
methods you will learn later, the FORTRAN statements are
executed sequentially.

The statements ‘ ACCEL = VEL * * 2/RADIUS
FORCE = MASS * ACCEL

are equivalent to the one statement in 1. A.28. Assuming the same

values as in II. A, 28, what value is assigned to the variable ACCEL?

Answer: 320.0

Answer: 20.0

—:VL_

I.A.30

Io. A, 31

I A.32

The advantage of using two statements is that the acceleration,
ACCEL, is available for use in other statements,

If the value of A is 20,0 and the value of B is 5.0, what are
the values of A and B after the two statements?

A=A+B
B=B+A

The first statement above assigned a new value to A, This
value is 25.0. It is obtained by adding the current values
of A and B. The new value of A is then used in the second
statement to obtain the new value of B.

You will be provided with FORTRAN coding forms for use in
These forms are not all alike but the

writing your programs.

basic format remains the same. The following illustration
shows the format of a typical coding form.

C for Comment

FORTRAN CODING FORM

d;tate-#

m entN(R) i FORTRAN STATEMENT co
N ORI N T N U OO 0 N0 T 00 100 N U OO0 WU U0 0 W T O 0 A MO0 W O AN U AN T AR T MO
| vt v b v s v Lo g b a g e b ooy oa e by
L f N B N S IlJlLJ_llllllllilllJ_.lllll‘lllILlllLL[
L1t il vt v v b e v by e g b b g b et d
Ld g i o v v Lo P e s b b by sl gaald
Ly I B S| lLlJ'lll\(IlLIlJJIlJllLl‘lllJJllJLd

Answer: 25.0, 30.0

—gL—

11, A.33

I.A, 34

TI.A.35

IM.A.36

Notice that the columns on the coding form are numbered from
1-80. These columns correspond to the 80 columns on the
computer cards which are used to input information to the
computer.

There are columns on the FORTRAN coding form. Answer:

After the FORTRAN program is written, the information on the
coding forms is keypunched into computer cards. The inform-
ation in each non-blank line on the coding form is punched into

one computer card.

After a program is written, keypunch operators transfer the

information from the to computer cards. Answer:

Columns 7-72 are used for writing the FORTRAN statements.
Normally, a statement will start in column 7 and use as many
columns as are needed to complete the statement.

FORTRAN stateménts must not start before column

or extend beyond column . Answer:

Suppose we get to column 73 and have not completed the statement.
In this case, the next card must be marked as a continuation card

and the statement continued in columns 7-72. Any card which has

a non-zero punch in column 6 is considered to be a continuation of
the previous card.

A limit of 19 continuation cards may be used for a single statement by

punching a letter or non-zero numeral in column of each Answer:

continuation card.

80

coding forms

II.A.37

C for Comment

FORTRAN CODING FORM

Continuation cards may be used when necessary on all FORTRAN statements.
Statement 20 in the example below is punched on a total of four computer cards.

d;tate—-

r
e

ment Nol FORTRAN STATEMENT

51017 50
Jllzlo lzllllIll[llllllllllllllllllllllllllllll_llll
||||1a+1cal|Alxllnllllllllllxnl::nlell:lll11111nl
AR | I]DIIIIIIIIllllllllllllllllllllllllLllIllllll
L1t /LEzlln|||l:|1\||1|||l|||11||111|1||J_1111111]

Y=X- A
SRR et by v by e e e b a s g by s v b g v by s bl

Statement 20 is an exaggerated use of continuation cards.
Actually, the computation of X would normally require only
card(s).

73 84
ITESTOOOS
O e e e
l’I‘l EISL'I‘] Ololl IO .
TESTO0015

| TR NI

L EEST0029

TEST 0025

NN N

L

Answer: one

_LL.—

II.A.38

Except for a special case which will be considered later,
all blanks which occur in columns 7-72 are ignored by the
compiler.

The following two statements are equivalent. True or false?

for Comment FORTRAN CODING FORM

o T
tate- E’
.

3

FORTRAN STATEMENT

JuentNoio, 50|
Lt X1=1AJ+IB1111J1111J1J_1|J|1:|J|11|111|11[:nuilull
_J._J__J_L__,_XJ___L_J1=1111Aj+lBLt:!lLtJ_IllaniLx:lrlxxlnl111:JIJJ
II.,A.39 The two statements in II. A. 38 are equivalent because the blanks
which appear in columns 7-72 are ignored by the FORTRAN compiler.
I.A.40 Columns 1-5 may be used to identify a particular statement by

assigning it a unique statement number. This statement number
can be any integer from 1 through 99999.

The same statement number must not be assigned to more than
one statement. True or falde?

Answer: True
73 8(
b
e b a

Answer: True

_SL-..

II.A.41 There is no need to assign every statement a number. In
fact, only a small percentage of the statements will require
statement numbers. The reasons for assigning statement
numbers will become apparent later.

Not all statements require statement numbers. True or false? Answer: True
II.A.42 When the statement number is interpreted by the FORTRAN
compiler, blanks and leading zeros are ignored.

The following statements all have the same statement number.
True or false ? Answer: True

FORTRAN CODING FORM

@: }(:‘E for Comment

entNol5| - FORTRAN STATEMENT]

;[n 57 50| 73
20 Z1=A1+B1 ' \
iy L v by b b e bevna b P g b g gl b iy
020 72 =A2+B2

b oy by g e e by s b s g be g o i aa il Ly v 4 1)
020 Z3=A3+B3 '

| ll!‘lllllIlllll]llllllllllllllllll—Jl1lllllll TR W A
Rlolzlo Zl4l=lA14l+lBl4lllLJllJlllll]lllllllljllllljlllI'lll i)y

II.A.43

II. A, 44

In the last example, we drop all zeros and blanks which
occur before finding a non-zero numeral. Consecutive
blanks on the right end are also dropped. Therefore,

the statement number associated with each statement is 20.

The four statements shown in the last example must not
appear in the same computer program. This is true because

they all have the same

Statement numbers may be assigned in any order. Since a
statement number is used as an identifier for one particular
statement, the value of a statement number is not related to

its position in the program.

The example below shows some valid statement number

assignments.

for Comment

FORTRAN CODING FORM

{nent Ng

e
tate~ |+
LO
O

7]

FORTRAN STATEMENT
50

Answer:

statement number

6 00

[

}glll_—-lAlll-!-l:Blll[Illllllll

1

[T EE RN DY RN A NN U A Y N N N B RN |

| . |

X2 =A2 + B2
P N A T A N0 O 0 O A O O O Y

bovg by e bty b s g

X3 =A3+B3

Lllllllllllllllll

Lo v b gaa by e b vag g

XI4I=|A1 4I-'-IBI4:I

| I A T T OO0 O O B

T I S SN A I AN A A AR A |

_08 -

II.A.45

II.A.46

I1. A. 47

Columns 73-80 are not scanned by the FORTRAN compiler.

It is suggested that these columns be used to identify your
program and to provide sequence numbers in case of dropped
cards, etc. For example, the first two statements of a program
to calculate the roots of a polynomial might contain the following
in columns 73-80.

73 80

| IRIQIqTI'OlOlOF
ROQTOOl 0
LA i

Lty

Numbering by fives or some other increment larger than one
provides flexibility for later program changes.

Columns 73-80 are used for punching the FORTRAN statement,

True or false? Answer:

It is often convenient to write comments which describe the
computations being performed. These comments may be
written on the coding forms by putting the letter C in column 1.
These comments will appear on computer listings.

A C in column 1 indicates that the card contains . . Answer:

Before continuing with section B, work exercise II. A in your
workbook.

False

comments

~"[8_

I.B Data

I.B.1 In the expression X**2, the quantity 2 is used in obtaining the
square of X. When the number itself is used in a FORTRAN
expression, it is called a constant,

The 2 in the expression X**2 is called a ‘ . " Answer: constant

© I.B.2 . - .Inthe expression 3.0¥X+6.0, the yalues 3.0 and 6.0 are constants. :
. Constants are used in FORTRAN expressmns in exactly the same .
.manner as variable names. _ : ‘ L

In the statement A=20, 0*B+4, 0, the value of Bis multlphed by 20.0
and the result is added to . R : Answer: 4.0

II.B.3 You may have noticed that some of the constanis in previous examples
' were written with decimal points and some were written without
decimal points. -This was done to illustrate the two principal types
of constants, The constant written without the decimal point is called
an integer constant. The name describes the set of values which can
be represented by this type of constant (integers}.

In the FORTRAN- statement L= 5+7*J there are two’ mteger constants. : '
’What are they’? - ' ‘ : Answer: 5, 7

—88—

The constants used in previous examples which included a decimal
point are called real constants. Here again the name suggests the

- range of values which can be represented by this type of constant
© (realnumbers). :

liThe"ex‘pressionj X*%2-5,4*C 'contaiih"s"botl; an .- '(}()n_st:an‘.t’:". s
‘and a constant. R R Senloo. . Answer: -integer,. real

Real constants may be written in several different forms. All of |
these forms have two common characteristics, however. They are:

1) Every real constant must contain at least one and not
more than 15 decimal digits. ' '

2) Every real constant must have a decimal f)oint.

Select the one value which is not classified as a real const?ht.

1) 45.2

2) .28

- 3) 36

4y 150,
5) 6.0

el i";;,AnéWer: 3) .

The answer 3 is correct because the value »3‘6 does not corifain a
decimal point. ‘

The value 36 is called an constant. o L . Answer: integer

Constants used in scientific work are often expressed as a value
multiplied by a power of ten. For example, .34 X 10-° is a
shorthand method for writing . 00000034. Real constants in :
FORTRAN may be written in a similar form. The value .34 X 10-°
is written in FORTRAN as .34E-6 or 3.4E-7 or .034E-5 or efc.

Write the actual x}alue of each of the following real constants.

1) .10E2 U . Answer: 10.0

No_tice that the power of ten is always written as a positive or

‘ negative integer. If no sign is indicated, the value is assumed
1o be positive. '

Select the real constant which is not written correctly.

1) .32
2) 40.0E-8
3) 50.0
4) .20E-4.0

5) .0006 P S Answer: 4)

_78 P

- ILB.9

I, B.10

Bl

In'number I B.8, 4), the power of ten miltiplier s written a5 a real

constant, This value is restricted to positive or negative integers,

Classify each of the following constants as either real or integer.

1) 24
2) 24.0
3) 256.5
4) 10
5) .03E2
6) 13.

Real constants may be zero or any positive or negative value between -

'10.0E-294 and 10,0E322.

- The value 25.0E400 is not a valid real constant because it is too

" A variable is aﬁuanfity (represented by“a‘sy‘mbol)‘,‘ ‘which may have .
-different values assigned to it during execution of the program.

The value of a variable may be chénged at any point in the program

" while the value of a constant always remains fixed. True or false?

Answer: integer
real
real
integer
real
real

Answer: large

Answer: True

~G8-

s 24

I N e

I.B.12 The value of a variable may be changed as often as necessary to
obtain the desired result. ' :
In the following example, the value assigned to the variable X after
statement 10 has been executed is ., The value of Y after ‘ ,
statements 10 and 20 have been executed is . : Answer: 5.0, 50.0
5 C for C omm ent - . FORTRAN CODING FORM
wSt t - -
:Eeaano,o _FORTRAN STATEMENT - t
e T, »
o |
C_I_Ll Ll gj_o,llv'[lplunTlEn rYl—nclolelDlI 1N1A1TIE| (T IR0 N RO R S OO0 O 0 W I W O O A O BN B O A I\
ltllglXf451101:|||111111'111l||||‘I|||||||||||111!111:1 ‘.|l|lllIlJO
1112|L_Y118111)(+10||Onll|11||||||1!141||;|1|l|l|:l1:111 | A YR T O IO R R .
II.B.13 The two principal typés of variables used in FORTRAN statements

are integer variables and real variables. Integer variables, like
integer constants, can only be assigned integer values. Real
variables can be assigned the value zero or any positive or negative
value between 10. 0E-294 and 10.0E322.

The two prinéipal types of variables are ‘ , variables and ‘ v
variables. ' Answer: integer, real

-98-

1L B.14

IL.B.15

- Integer constanf_s‘ are distinguished ffém real constants by the

presence or absence of a decimal point, The usual way of dis-
tinguishing between integer variables and real variables is by
proper selection of the variable name. Variable names begin-
ning with any of the letters I, J, K, L, M, or N are considered
to be integer variables.

Classify each of the fbllowing variables as either real or

integer. .
1) RADIUS" —e - Answer:
2) JCOUNT e : '
3) ACCEL
4) X
5) K

Integer constants and variables are stored in the computer with

- the binary point assumed to be at the right hand end of the computer
~word. The mode of operation mvolving integer constants and vari-
‘ables is called fixed-gomt or integer arithmetic.

All arithmetic in the statement K = J -~ L is performed in the
mode.

Answer:

real

integer
real
real
integer

fixed-point

_Lg—

II.B.16

II.B.17

I.B.18

Real constants and variables permit fractional values and, therefore,
must be stored in computer memory along with an indicator which
provides information on the position of the binary point. The
binary points must be aligned by the computer before the operation
can take place. The mode of operation involving real variables and
constants is called floating-point arithmetic.

,_‘\SinCe most applications require fractional values, calculations are
generally performed in the mode. '

Remember that fractional values cannot be carried in the fixed-point
mode. Therefore, a division of two fixed-point values will result in
the loss of any remainder; this is called truncation.

If the value of J is 7'and L is 5, the result of the expression J/L is

Work exercise II. B in your workbook before starting section II. C.

Answer:

Answer:

floating-point

—88_

II.C

IL.C.1

IM.c.3

- Mixed-Mode Expressions

In some instances, it is convenient to write expressions which con~
tain a mixture of real and integer quantities. If no exponentiation

- is involved, the two modes miay be mixed without any restrictions.

Generally speaking, mixed-mode and fixed-point mode arithmetic

- require more computer time and memory location than does

floating-point mode arithmetic.

Integer and real quantities may be mixed freely in the same expres-
sion as long as there is no exponentiation. True or false?

Within a pair of parentheses where the mode is constant, all com-
putation within those parentheses will be carried out in the mode of
the quantities present. '

In the statement X = Z*(4-J), the mode of (4-J) is .
If the mode is mixed and no parentheses are present, the integer

quantities are converted to real and the calculations are performed-
in the floating-point mode.

i Suppose each of the following expressions is evaluated ‘Give the

mode of the result of each expression.

1) (L-K)

2) (X-3*P)
3) Y-L/K
4) Y-(L/K)

- Answer:

Answer:

Answer:

True

fixed-point

fixed-point

floating—point
floating-point
floating-point

68.

Let us examine each expression in II. C. 3 when

1I.C.4
K=4 P=5.3
L=1 X =20.5
' Y=23.35

Number 1 is composed entirely of integer quantities. Therefore,
it will be evaluated in the fixed-point mode. ,

- H.C.3 1) (I-K) =3

" Numbers 2 and 3 are mixed expressions with no parenthesés within

the expression and the integers are converted to floating-point form
before the expressions are evaluated. ‘

I.C.3 2.) (X-3%P) =20.5-3. * 5.3
=20.5-15.9=4.6

‘InI;C.3 3.) notice that both L and K are converted before the
division takes place and the result of the division is in floating-point

form,

m.C.3 3.) Y-L/K = 3.35-17.0/4.0

' = 8.35-1.75
1.6 :

.

In this case L/K is not truncated.

06

II.C.4 Number 4 is also mixed mode, but it contains an all fixed-point .
(Cont.) . expression within a set of parentheses; This fixed-point expression
is evaluated first giving a fixed-point result. This result is then
converted to floating-point form and subtracted from Y. In this
case the result of L/K is truncated.

II.C.3 4.) Y-(L/K) = 3.35-(7/4)
= 3.35-(1)
3.35-1.0=2.35
I.C.5 When an expression contains exponentiafion, the following rules

determine the type of the result obtained.

1) Integer to an integer power gives an integer result.
2) Real to a real power gives a real result.

3) Real to an integer power gives a real result,

4) Integer to a real power is not allowed.

. Indicate the type of result given by each of the folloWing expreésions,. |

1) X*k2
2) Y*H(J+K)
3) L**N
4) R¥*Y

|

Answer:

real
real
integer
real

-'[6—

Now let us consider an exponential as part of a larger mixed mode
expression. First, determine the mode of the result of the
exponentiation. Next, consider this result as a quantity to be
used in the larger expression and apply the rules for mixed mode
expressions.

One of the following expressionsis not valid. Indicate the type
of result given by the following valid expressions.

1) L-J¥*3
2) R-J**B
3) K+R**Y

Answer

In the previous expressions, the second is not valid since an

integer raised to a real power is not allowed. In the remaining
two examples, the type of result obtained from the exponentials
is determined first. In the first expression, the result is an
integer . which is then subtracted from an integer. Thus, an
integer value is obtained. In expression 3, the result of the
exponential is a real quantity. The expréssion is now mixed
since it contains a real quantity and an integer quantity. There-
fore, the integer is converted to real form and the addition is
performed in the floating-point mode yielding a real result.

: “integer
invalid

" ‘real-

—86_

In a FORTRAN arithmetic statement, the evaluation of the
expression on the right hand side of the = results in a single
value. The type of this result depends on the operations involved
and the types of the different variables which appear in the
expression. If the variable on the left of the = is not the same
type as the result of the expression on the right of the =, the
result of the expression is converted to the type of the variable
on the left.

:For .example, I =X+Y will convert the result of the expression

X+Y to integer before assigning the value to I. This results.in
the loss of any fractional part. The conversion (if needed)
across the = is always to the type of the variable on the

of the =,

Work exercise II.C in your workbook.

B
e BT
P

T T il

Answer: left

86

II.D Afrays and Subscripted Variables

II.D.1 Sometimes it is necessary to have several values of one variable
available for computation. For example, values from a table of
hourly temperatures over a 24 hour period are referenced as T (1),
T (2), T(3), . . ., T(24). The variable T in this case is called
a subscripted variable. :

_ A subscnpted vamable prov1des a means for assomatmg several
" values with a single var1ab1e True or false?

II.'D. 2 A variable is defined as a subscripted variable by use of a
‘ - DIMENSION statement, The following statement defines the
variable X as a subscripted variable.

FORTRAN CODING FORM

C for Comment B ; ‘
tate- 4—\ . ‘ , ! ;
LmentNo g , FORTRAN STATEMENT
=D '7 . . .) 501
: | 4
[J_L_LIJ__PIIMENLSJLO: X(lzl)}_Ll T RO B VSR O AL KO WE UE SN BN B S N AR S |

A varxable which appears ina DIMENSION statement is called
R var1a.b1e., L ‘

* Answer: True

73 20

J'_L.l RN NI A

Answer: subscripted =

_v6.-

II.D.3

C for Comment

The value 2 in the statement DIMENSION X(2) indicates that the
data array X may contain a maximum of two values. The maximum
values of subscripts which appear in DIMENSION statements are
restricted to integer constants except in one situation wh1ch w111 be

i discussed later. |

‘The statement DIMENSION A(20), Y(300) defines' A and'Y as sub-

scripted variables and reserves computer memory for up to
values of A and values of Y.

The value of the subscript determines which quantity in the data
array is referenced. For example, the following statements store
values into the fourth and fifth locations of the array XTAB and
into location ninety of TEMP.

FORTRAN CODING FORM

WState-
Jl'nent N

]

FORTRAN STATEMENT ﬂ}
e B

SO CA O S

DIMEINSIPIN XTAB'(10), TEMP(ISO)LI [T T A O N O A I ll\

| S [[|

T N

B ey 550 S S8

?ELJ_]BI(14I)IIIIIIOIIIIIIIlIIIIIILII‘IIlLLIIIl[l!ll[|
XTAQ(S) 17 5

||11L1|||lllnLln:ll[uul:lll|l||||Ll

L i

TEMP|(90)II(XTABK(4) XTAB())/(Illll)l|llllllllll\ ;

The type of a subscripted variable is determined in the same manner
as the type of a simple variable. What is the type of the subscripted
variable TEMP ?

Answer: 20, 300

73

gl

l e L

vl‘llllll

T W A A U

Answer: Real

11.D.5 In the previous examples, only subscripted variables with one

—96_

subscript have been shown. It is also permissible to define
variables with two and three subscripts. The following
DIMENSION statement defines variables with one, two, and
three subscripts.

FORTRAN CODING FORM

C for Comment »
‘ t:rstel-\To‘E : :. v N L »FORTRAN STAT'EMENT » . ‘
: l}i“ 517 | s n
' “ ' 2,40, 5 B
l, 1.4 l,,.l; DIIME[NQS]I |O|Ii A (10) ¢ XTAlBl (42|1 3 0) Iﬂ(ST 1)1 Pl l\! co LL.L_IA_J_l L

A subscr1pted vamable may be defmed w1th one, two or three) A
.subscrlpts True or false? - Answer: True

II.D.6 A data array defined with one subscript is referred to as a one-
‘dimensional array. The terms two and three-dimensional arrays
are used to refer to variables with two and three subscripts,
respectively.

A subscripted variable with two subscripts is referred to a}isv a
dimensional array. : Answer: two-

-96-

The value of a particular subscript is called an index. The index
must be an integer constant, an integer variable, or the integer
result of simple arithmetic operations.

Pick the one statement with an invalid subscript.

STATEMENT
NUMBER

1 2 3 4 5

3

$4 --CONTINLUATION

- Y_§=IZIT§A§,B|(15”§110 1_).L?J,KJ (.131)’ B el el abadl Sl fhnd o ol
ATELANT L b e v e Lo b
AP T =P (-1 X ZTAB(L*3-4,.00 0 0 0
K 1105),“52.2(3.{,3.)[st sitnbot oot J b oA & 8.8 8 dud £ K B g
EAL,L .: Lot L PO INTTINNS (NN OIS VIO QN O R T Pl S R T S

4 . .]
!
Eo B B oah e e e B el M SBn e B Bedled b B R flaled B w buas d

Let us examine the FORTRAN statements used in the last question.
First, the DIMENSION statement defines three arrays. The first is
two-dimensional and the second and third are one-dimensional.
Statement 5 computes Y using values from ZTAB and K. J is then
computed using existing values of L and N. The next statement
illustrates the use of integer variables and simple arithmetic
expression as indices. Statement 10 is not valid because a real
variable cannot be used as an index.

FORTRAN

7>'8 910 1Y 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40.

DIIMENIS ION, ZTAB(2,0,30).,K(30),P(65).,

IDENTIFICATICN
AND STQUENCING

73 74 75 76 77 78 79 80

Answer: Statement 10

L6

I1.D.9

II.D.10

II.D.11

In the statement, DIMENSION ZTAB (20, 30), the values 20 and 30
represent the maximum values of the first and second subscript
respectively. This statement causes the reservation of enough
computer memory for a maximum of 600 values of the variable
ZTAB. The maximum number of values is always the product of
the maximum values of the subscripts.

Determine the maximum number of values which may be assigned
to each of the variables in the following DIMENSION statement.

DIMENSION X(3, 30,4) , Y(20, 60), K(2,3), P(10) Answer: 360, 1200, 6, 10

If a subscripted variable is referenced as a simple variable, all
subscripts will be assigned the value 1. For example, the expres-
sion Y*ZTAB+B will be interpreted as Y*ZTAB(1, 1) +B(1l) if B
and ZTAB have been defined as one- and two-dimensional variables,
respectively.

In general, an index of 1 will be assumed for all subscripts missing
on the right. KTAP(I) implies KTAP (I, 1, 1) if KTAP is a
dimensional array. . Answer: three-

Two-dimensiohal arrays are often thought of as a rectangular array
where the first subscript represents the row number and the second
subscript represents the column number.

If AMAT is a two-dimensional array, write the expression which
multiplies the value in row 6 column 8 by the value in row 1 column 3. Answer: AMAT(6, 8)*AMAT(1, 3)

_86=

I.D.12

II.D.13

11.D.14

As a review of subscripted variables, fill in the following blanks.

A subscripted variable must be defined by the use of a
statement. This DIMENSION statement may define several sub-
scripted variables if they are separated by . As in all
FORTRAN statements, continuation cards may be used if
necessary. If X has been defined as a one-dimensional array, the
use of the variable X without a subscript in an arithmetic statement
will always reference The expression X(5)¥X(6) will
multiply the fifth and values of the array X. Of course,
we have assumed here that the array was defined with at least
values. If AMAT has been defined as a two-dimensional
array with 20 rows and 40 columns, the maximum number of values
which can be assigned to AMAT is 20 X 40. The row index must
never exceed and the column index must never exceed 40.

The reference manual* gives information on how data arrays are
stored in computer memory. This information is not necessary for
writing FORTRAN programs if the programmer remembers that he
must use the same indices to reference a value as were used in
gtoring the value in the array. This means that if a value is stored
in AMAT (6, 10), then any reference to the value must have the same

indices. The indices are not required to have the same form, however,
The reference could be X*AMAT(I, J) as long as the value of I is 6 and

J is 10.

Work exercises II. D in your workbook.

CONTROL DATA FORTRAN REFERENCE MANUAL

Answer:

DIMENSION

comras

X ()

gixth

gix

20

66

II.E Data Types

II.E.1 The five data types to be discussed are:

integer

real

complex

double precision
logical

II.E. 2 A provision is made which permits the type of a specific variabl
to be declared in the program. This is accomplished by the use

of a type declaration statement. The type declaration must appear
before the variable is used.

A variable named COUNT is normally a variable. It
may be declared an infeger by use of a type declaration statement.

-001-

I.E.3 The type declaration statement consists of the type followed by
the variables being declared as that type. The variable names
are separated by commas. The following statement will cause
X1, X2, and X3 to be considered integer variables.

FORTRAN CODING FORM

e

(———— C for Comment

WState-

;inentNo
5

i

Con

FORTRAN STATEMENT
7 5

e___|

INTEGER X1, X2,X3
Ll OO S O U A T S T O O W B 0 T I T O Y T B QY I o O

An integer variable does not need to appear in a type statement
if the variable name begins with one of the letters , .
K, L, Mor

sl |

Answer: real

SR . At
i S PR

73 20

N IR S

Answer: I, J, N

II.LE. 4 The following statement will cause K1, K2, and K3 to be considered real variables,

FORTRAN CODING FORM

C for Comment

State tp FORTRAN STATEMENT
entNo [
5 (&1l 50 73 &0
R 1
1l XE!ALlell’JI(lzl’JI%BIJI¢IIlllllllllllllllllllllllljl ooy oy
COUNT is a real variable only if it is declared a real variable by use of a type statement.
True or false? Answer: False
II.E.5 A1l variables which are complex must appear in a type statement. Here, the word
complex has the same meaning as complex numbers used in mathematics. The follow-
P ing statement defines E, EA, and EG as complex variables.
7
FORTRAN CODING FORM
{ C for Comment ‘
State- [‘sj . FORTRAN STATEMENT \
paent No! 50, 73
l;pll_ljc.loMPLEX E[lLIlQ(J![zlilllLlLl!JIIIIIJJJJ|LL_1_L\ [I A

=01~

II.E.6

e

Each complex value has two parts, a real part and an imaginary
part. Thus, a complex constant is composed of two parts. These
two parts are separated by 2 comma and enclosed in parentheses.
Each part must be a valid real constant. The following statements
illustrate the use of complex constants and variables.

PR FORTRAN CODING FORM

blSta te-

;inent Nois
q'

-+
=

FORTRAN STATEMENT i
B0

A

DI M NSION (4) XTAB(20 30)
L o i L1 Lafa i o b ot e il e vl ooog il

S S S

L O

COMPFEXA , XTAB
| lle:LlLl
A('-’), (

LN LIILIJL()llli_)LlJLj_LL4lllllillllIllglllll

5 0 OO O T 0 0 0 O 0 A O W O VO 00 O O (OO 1O O

(N Y I §

A(41)i L(lILIQLELOlZ’Ll234)LLJ£llllIllllLllLlllllllJl

|)

XTAB(N 1,3*1)= A(3)*A(4)+(3 ‘4,5.2)

o |

N O O A OO T PO
CXT}A 1,1)

bl e g i d e s e bl pead g i ey el v g aal jag gl

In the first statement, A and XTAB are defined as variables.

The variable A may be assigned a maximum of values. This means
four complex values since A is defined as in the second

statement. Remember that the real and imaginary part constitutes one

complex value. The arithmetic operations performed in statement number

10 are carried out according to the usual rules of complex arithmetic. The

values in each part of complex constants must conform to the rules for
constants.

73 8(
Lo d gy
O O OO W (O, OO O :
lllllllll
TN I (O
1 N VO T 8 O IR
oo v o o 0 ¢ 4 5.4
Answer: subscripted
4
complex
real

-g01-

ILE. 7

Variables and constants can also be defined in the DOUBLE
PRECISION mode. This type of variable is used only when
accuracy requirements demand that more than fifteen signi-
ficant decimal digits be carried during arithmetic operations.

Just like complex variables, all double precision variables
must be declared in a statement.

Double precision variables must be declared in type statements
using either DOUBLE PRECISION or simply DOUBLE.
For example,

DOUBLE PRECISION A, R, Q

DOUBLE X, Y

will make the variables A, X, s , and double
precision.

Answer: type

Answer: R, Q, Y

-$01-

ILLE.9

TLE.10

Double precision arithmetic requires that two computer memory
locations must be used for each value. One contains the most
significant part of the word and the other contains the least

significant part. Special procedures have been developed to

carry out arithmetic on values in this form. This does not

concern the programmer except that he should remember that double
precision arithmetic is considerably more complicated and, therefore,
takes much more computer time.

For the 20 digit number 98989898981212121212 the most significant

half of the number is 9898989898 x 1010 and the least significant
half of the number is 1212121212,

Double precision and complex arithmetic is very valuable when
needed. It should be remembered, however, that execution time

on the computer is much in these modes. Answer:

A double precision constant differs from a real constant in that
every double precision constant must be written with a power of
ten multiplier. The power of ten in this case is denoted by a D
instead of E which is used for real constants. Up to 29 digits
may be used in writing double precision constants.

Classify each of the following constants as integer, real, or
double precision.

a.) 10 v Answer:

b.) 20.0
c.) 21.00E-3
d.) 266.0D-2
e.) .075D3

greater

a.) integer

b.) real

c.) real

d.) double
precision

e.) double

precision

-G0T1-

II.E.11

The last type of variable to be discussed is the logical variable.
This variable must also be declared in a type statement,

The following statement will cause A, B, and C to be considered

logical variables.

FORTRAN CODING FORM

E——— C for Comment
tate- l-;-:’

:\nentNgL87

FORTRAN STATEMENT

]

Unli

LOGICAL A, B, C

lnll:141]11_11414_1ll|1|11|Llnilxn1JILHJ|1nnl1

\

II.LE,12

All logical variables must be declared in a statement,

A logical variable is similar to an on-off switch. It is either zero
or non-zero. If it is non-zero, it is said to have the value .TRUE, .

If it is zero, it is said to have the value , FALSE.

A logical variable can have the value or the value

73 _ 80

T I N

Answer: type

Answer: .TRUE.

.FALISE,

-901~-

II.E.13 In previous examples, we have always considered FORTRAN
statements executed in sequence. In PART T of this manual you
will see how to change the order of execution based on the results
of certain computation. For example, the roots of a quadratic
must be computed in one way if b2 - 4ac is positive and a different
way if it is negative. If a logical variable is set to . TRUE. in one
case and , FALSE, in the other, it may be interrogated later in the
program to determine which computation was made.

II.E.14 Since there are only two possible values which a logical variable can
assume, there are only two logical constants. They are . TRUE. and
.FAISE, . The three statements below illustrate the use of logical
constants.

FORTRAN CODING FORM

{S——Cfor Comment
tate- |
%‘ﬂentNobO FORTRAN STATEMENT
51007 5 73 24
LOGICAL K
llllm___IlllJLllﬁ’llll[llj_llllllfllll{ljllxlllll11(1“ ool
5| [K=.FALSE. ’
TN TN O RN U U o N Y S AN S O T S WO AU W W T A R O D W OO B A I AR IR I AW I | S A ST AU A
IR} Al-—n'lTleULEx.xl:1|1ll|1|lL11111Llllxnlxlll1|L|11Ll FURCT W TO S WS BT |
Statement 5 will cause the variable K to be set to . The

next statement will set A to a non-zero value. Specifically, each binary
digit will be set to a 1. Answer: zero

~L0T~

II.E, 15

11.E, 16

IILLE. 17

The two logical constants may be shortened to ,T. and .F. for
convenience,

Logical constants may be written as ,T, and , F, instead of

and Answer:

-

This completes the definitions of the five variable types. Two more
constants remain to be discussed, however. The first of these is the
octal constant. This constant permits a number written in the octal
system to be used in FORTRAN statements. This constant is gener-
ally used when a particular set of binary digits is required.

Since each octal digit converts to three binary digits, the sixty bits

in a computer word is equivalent to octal digits. Answer:

An octal constant is right adjusted in the computer word. This means
that if fewer than twenty octal digits are specified, then the unused binary
digits on the left are set to zero.

If an octal constant contains ten digits, it will be converted to thirty
binary digits which will occupy the right hand half of the computer word.

The left hand half will be set to . ‘ Answer:

.TRUE. , .FALSE,

290

Zero

-80T-

II.E,18

II.LE, 19

II.E.20

The first method which can be used to write an octal constant is
the letter O followed by at least six octal digits and not more than
twenty octal digits. The second method to write an octal constant
is to follow a set of octal digits by the letter B. Here again, the
number of octal digits must not exceed twenty.

One of the following is not an octal constant. Indicate which and

tell why.
1) 0027431
2) 25B
3) 0653 Answer: 0653 is a variable
:) name
The last constant to be defined is the Hollerith constant. This
constant provides a means for converting characters (letters,
numbers, and special characters) to the 6000 series console display
code. Each character is represented in the computer by a unique
set of six binary digits. Thus, ten characters may be stored in each
computer word.
Each character is represented in the computer by a unique set of six
binary digits. The word THE requires binary digits. Answer: 18

The Hollerith constant is written with the number of characters, the
letter H, then the characters to be converted to display code. For example,

THTESTING
will convert TESTING to display code.

The 7 in THTESTING indicates the of characters to be
converted. Answer: number

=601~

II.E. 21

II.E.22

I.E.23

A blank is considered a special character and has its own display
code. Therefore, blanks within the count specified for a Hollerith
constant are not ignored.

Indicate the proper character count for the following Hollerith
constant.

When less than ten characters are used, the Hollerith constant fs
left adjusted and blank characters are added on the right end.

If the character count is six, how many blank characters are
added to the right end of the Hollerith constant?

Two variations may be used in writing Hollerith constants. These
variations replace the H with the letter L or R. When ten characters
are used, the same result will be obtained by using H, L, or R. If
less than ten characters are used, the use of the letter L will cause
the characters to be left adjusted in the computer word. The use of
the letter R will cause the characters to be right adjusted in the
computer word. Inboth cases the unused portion of the computer
word is filled with binary zeros instead of blank character codes,

Answer: 10

Answer: 4

~0TT~

IILE. 23 Now let us compare the three statements

(Cont.)
a.) A=4HTEST
b.) A =4LTEST
c.) A =4RTEST
Their differences can best be illustrated by examining the contents
of the computer location which contains the variable A after the
execution of each instruction. Let b denote the character blank.
computer location A
a.) A =4HTEST TEST b b b b bb
24 bits 36 bits
b.) A=4LTEST TEST 00....00
24 bits 36 bits
¢c.) A=4RTEST 00....00 TEST
36 bits 24 bits
The use of the letter H causes the unused portion of the computer
word to be filled with characters. The use of the letter Answer: blank
L causes binary to be used for the same purpose, Zeros
IILE.24 The next section will give additional information on some uses of the

octal and Hollerith constants. At this point work exercise II. E in your
workbook.

-Ti1-

IoF Logical Operations

Ir.1 Previously we considered the different arithmetic operations. In
' this section the three logical operations will be discussed. The
arithmetic operations were based on the operations of basic arith-
metic. The logical operations are based on Boolean algebra.

II.F.2 " The three logical opera’éions are ,AND, , .OR, , and ,NOT,
' Logical operations can be performed on variables, constants,
or expressions of any mode,

Logical bperations may be performed on octal constants. True v
or false? Answer: True

II.F.3 The result of a logical operation is considered to be in the logical
mode. This result may be used in mixed mode expressions or
assigned to a variable of any type.

Consider the FORTRAN statement

FORTRAN CODING FORM

C for Comment
tate~ |+ ‘
!inent Nol/3 . FORTRAN STATEMENT
507, - 50 73 8(

IFPJOlO 00 00 o 1A|N1Dl 1OJOx010 00102

L1 Syl e bv v e e Lo b o] Lol

L

The value on the right side of the equal is the result of a logical operation
and, therefore, is in the mode. When this result is assigned Answer: logical,

to I, it becomes an integer value, but no , occurs across the equal, conversion

311~

L. F.4

~— C for Comment

The logical operations are performed on the binary digits. In
the case of the ,AND, operator, each binary digif of one

value is compared with the corresponding binary digit of the
other value. If the binary digit of the first value and the
corresponding binary digit of the second value are both 1, the
corresponding binary digit of the result is a 1. All other binary
digits in the result are 0. ' '

Consider the FORTRAN statement

FORTRAN CODING FORM

tate~ jé
entNo,O
pen 2

FORTRAN STATEMENT
50 73

b214

llll‘

OOOLOIOIOIOI AINPl'xoloxOxoonoolzleJ||L1|:xlHnleu Al

What is the value of I after execution of the statement ? Answer: 2

The previous result was obtained by examining the binary digits
in the two values.
00000003 = 00- - - 000011y
00000002 = 00--- 0000102
I = 00- -+ 0000105
The second binary digit counting from the right end of the value
is the only position which has a 1 in both values. This, by definition,

gives a 1 digit in the result. I is then set o this value without
conversion and 010, =2 .

~e11-

II.LF.6

The logical . OR, compares corresponding binary digits and whenever a 1 is

precgent in either operand the result is a 1,

Consider the statements

FORTRAN CODING FORM

r-——' C for Comment
iState- |+
& FORTRAN STATEMENT
mentNoio 5
507
=5 '
T A0 A Y O OO0 0 N N O T T O U U T NG U Y U0 OO 00 G U N YO 0 U A G U O 0 O 10 S TR OO0 N O OO0 OO
J=16
el it b e vy b v e brvv s bas s b e s bore e b el
llll‘RI=SIJ'LOIR_L.1JL1ll\\lllll1llL11_LllilllL1141lllllllJ
What is the value of R in octal after the execution of three
statements ?
ILF.7 The previous answer is determined by looking at the binary digits

of the values involved.

I=00---000101y

J=00""" 0100002

R=00---010101,

Since the result of the . OR. operation is in the logical mode, no
conversion is made across the equal.

73 RQJ

bl

| TR T T T B B S|

[ST TS U N W B A

Answer: 258

“$11-

The operator ,NOT, operates on a single value. The result of
this operation is a value which containg ones where the operand
contained zeros and zeros where the operand contained ones.

Consider the statements

FORTRAN CODING FORM
for Comment

C
State~ |

E FORTRAN STATEMENT
ment Nolo 50
1 R‘;U;‘Z
i
lJll_,)’__LlOlGlILClAtLIIII’lALRll‘llll]llll‘lllll_llllxllIJJIIJAI_L
,L_.L,L,L__I_L=J,(1°INL01T1'3AI)11(t11x11lnllnlllnnllnxx[llul;;14
If A has the value ,TRUE, , what is the value of I after the
execution of the statement ?
I, F.9 In the previous example, A is ,TRUE.. This means that all
binary digits in A are equal to 1. Since (.NOT. A) changes all
binary digits in A, the result is zero. Since I is a logical variable,
a zero value is considered to be the value , FALSE, .
II.F.10 Work exercises II. F in your workbook.

73

e bl

bov s i b e aa

Answei': . FALSE,

=611~

.G

1.G.1

I11.G.2

I1.G.3

More on Mixed Mode Expressions

Mixed mode expressions were presented earlier for real and integer
variables and constants. Now we must expand this concept to include
the additional variables and constants which have been discussed since
that point.

Suppose the expression within the innermost set of parentheses is being
evaluated. If all variables and constants are of the same type within
these parentheses, no conversions are necessary and the result is of the
same type.

In an earlier section, you learned that the mixture of real and integer

types in an arithmetic expression gave a result in the mode. Answer:

If the variables are not of the same type in an arithmetic expression,
the order of dominance is:

1) complex

2) double precision
3) real

4) integer

5) logical

The result of an arithmetic expression will be the type of the most
dominant variable present in the expression.

The result of the expression (J - K) is . Answer:

real

integer

911~

I11.G.4 Except for the logical type, the general rule is that the values are
converted to the most dominant type present and the expression is
evaluated in that mode. No conversion is performed on logical
variables and constants, but the evaluation is still performed in the
mode of the most dominant type present.

Consider the expression (A + K) . If A is double precision and K

is integer, K is converted to and the addition
is performed in the double precision mode. Answer: double precision
n.G.5 In mixed expressions, exponentials should be considered as a

separate expression to be evaluated first. The result of the exponential
can then be considered as a value within the original expression. The
following table shows the type of the result of A**B for A and B of
different types.

Type of B
!! CDP{RII L
C{Nj N/ NJCIN
DPEN| D/ D|D{N
Type of A rRiINIDIRIRBRIN Type of A**B
I NIN|JNII | N
LUN|NINII |IN

N means not allowed

From the above table, what is the type of the result when a complex
value is raised to an integer power? Answer: Complex

-L11-

I1.G.6

II.H

Work exercise II.G in your workbook.

Exercise II.H in your workbook is a review of PART II. Work exercise
II.H at this time

~-811-

Im.A.1

Im.A2

Introduction

In the preceding section you learned to refer to constants, variables, and expressions in
FORTRAN notation and to use these guantities in mathematical computations. The writing
of FORTRAN statements in the proper order describes a mathematical problem which may
be solved by a computer,

You learned that the computer executes statements in the order which they are written. The statements

FORCE = XMASS * ACCEL
DIS = 0.5 * ACCEL * TIME **2

cause the computer to calculate FORCE first, and then DIS. Furthermore, as this stands, the
computer will execute each of these statements just once for each time you write it.

Now you will learn how the use of control statements will enable you to tell the computer to go to
and execute certain statements out of the normal order, and whether to do the operation more than
once for each time you have written the statement. You will be able to tell the computer how many
times to loop back and repeat this operation; or you may choose to instruct the computer to decide
how many times to repeat this loop, based on signposts (values) you will provide,’ and then to give
you a record of action taken by means of variables you can interrogate.

Further, when you interrogate any variables, you will find the answer in a format you have specified:
either a logical true /false, or a computed value within a range of specified values. You will have
already written statements telling the computer what to do next based on these values, or whether to
continue or to stop because your program has come to the end of the statements you have written.

-611~

Based on the foregoing, it can be seen that control statements give

the programmer a powerful tool that frees him from unnecessary
extra writing and speeds the work of the computer by providing it

with advance instructions as to what to do in all predictable conditions.

If a FORTRAN program logic uses control statements properly, the

programmer needs to do (more /less) writing. Answer:

Statement numbers identify FORTRAN statements to which control
statements must refer, but are not needed on other FORTRAN state-
ments. This is why we read in Section II.A .41 that only a small per-
centage of statements need numbers. (Actually, as will be seen later
under the IF statement, sometimes the IF statement may send the
computer to another statement merely by its position relative to the
control statement without referring to the statement identification; but,
otherwise, statements to which the computer is referred must be

labelled by a statement number,)

When a control statement refers to another statement, that statement

must be labelled with a . Answer:

less

statement number

-0gL-

Io.A.5

In the following example, repeated from Section II.A.44, some
statements carry statement numbers in columns 1-5, and one is
unnumbered.

FORTRAN CODING FORM
for Comment

{Etate— Z’

tNold
pentg

FORTRAN STATEMENT
50
7 |

600
.

Xll l=lA1 1L+lB !

s[]nxx!l;;nlllxlxllllqlllnllll.nnlnlLllJ

99
A T O

F W W |

X2=A2+B2
SN U /A VO Y
X3=Al3+B3
I -

N T DT ST TR 0 AT U WO AU (N WO VT YA VNS (0 VO SN J00T S T TSN VOO AN Y U S DO Y S S WY

N N N I I I AN SR SR IR Y SN B BN U B AU T B e S

| N W {

1
e N I N T N N0 Y N U U U N0 Y T U 00 I S U W0 O 0 A DM O BN

X4=%4+B4
Lodl

You would expect to find a control statement or statements elsewhere
in this same program referring to which of these statements: 600,
99, unnumbered, or 47

If you later, after writing the statements in III.A.5 above, wished to
have a subsequent control statement refer to the third (unnumbered)
statement in the example, you could label this one also, with any

statement number not already used in the program. True or false ?

Continue with section II.B at this time.

73 8

S TR SR B

IR S R N

‘11)1!!1;1!

Vo b et d

Answer: €00, 99, and 4

Answer: True

III.B GO TO Statements

II1.B.1 The first control statement we shall study is the GO TO statement.
The GO TO statement does exactly what its name implies. It tells
the computer not to execute the next statement in the normal sequence,
but rather to ''go to'" some numbered executable statement elsewhere
and continue executing statements in the normal manner from there.

In the example: GO TO 50
30 I=1
50 I=2

what is the statement that will be executed next after
"GO TO 50"7? Answer: I=2

III.B.2 You have seen executable statements before. The arithmetic state-
ments are a good example, such as A = B + C, because this causes the
computer to do, or execute, something., An executable statement can-
not be one that merely defines, such as DIMENSION and the type state-
ments you used in Section II, and the COMMON statement you will learn
about later.

~-181i-

I = 2 is an executable statement., True or false? Answer: True

=¢gi-

IL,B.3

Which of the fo
transferred to

llowing sample statements could not have control
it by a statement "GO TO 50" ? Why?

1,) 50 A=B+C
2.) 50 DIMENSION A(4)
3.) A(4) = (24, 0E02, .234)
4.) 50 LOGICAL
5,) 50 A=A.AND.B
II1.B.4 The simplest form of the GO TO statement is called the unconditional
GO TO, which has as an operand a statement number to which control
should be transferred next. For example, the statement "GO TO 100"
will cause statement 100 to be executed next.
What is the value of X as computed by the following statements ?
FORTRAN CODING FORM
- C for Comment
WSteimm |
ment No| 8 FORTRAN STATEMENT 51)!
£y 0.
1115l0 12131L101|11lLt;&lx414!LLL;J_LJ~“filx]leJ|L:H|H
6x3€’__X1=11f~°101 YO0 T T S T VY UV SN T Y Y U T W U U N T O S W A 0 Y O W R A N0 B
[N GPIKTIOI |1|01014141J141141111111Allln.Lnlgll;LnL.4[
L1L114 jgil)il-l—rAllLJlJlJl_lIllllLlllliLlIlLllllJlJlllJLil
LIILOIO YL:lefl*nss TN T NN YOO WO T VA VO O O NN T YO O S WA WO O OO IO WY ¢ B lliL_LLng'

If your answer

is correct, skip to III.B.6

Answer:

1,) OK

2.) DIMENSION statement
3.) statement is not numbered
4.) type declaration

5.} OK

Answer: X=1,0

73 8(

.L_LJ__J_IL_LJ_.L_L_J_

AR B R |

oo Lo a g8

Lo v o b et

P oo tag o0 g

-g¢1-

III.B.5

I.B.6

The example above would be executed by the computer as follows:
Statement 50 would be performed first, setting vwariable A to 3.0,
Next, statement number 633 would set X equal to 1.0, The next
statement, GO TO 100, tells the computer to execute statement
100 rather than statement 14. Statement 14 is not executed at this
time. Notice that at the completion of executing statement 100, X
has not been changed from its original value of 1.0.

If the "GO TO 100" statement has not intervened, statement number

14 would have been exécuted, and the new value of X would be ’ Answer:

The GO TO statement in the example above is called an unconditional
GO TO because it does not give the program any option.

The computer unconditionally executes the statement explicitly named

in the GO TO statement. True or false? Answer:

However, if the programmer wishes a GO TO statement that provides a
choice of statements to which to branch, he may use two other kinds of
GO TO statements. These are called the assigned GO TO statement and
the computed GO TO statement. The next few sections will describe their
differences in format and meaning.

The two kinds of GO TO statements that allow the programmer a choice
of where to branch are called the GO TO and the

GO TO. ‘ Answer:

X+A or 4.0

True

assigned, computed

-$31-

1.B.8

C for Comment

In the assigned GO TO statement, the programmer assigns
a statement number to a control variable and then uses the
control variable in the GO TO statement, In the example
below, the assigned GO TO statement would cause transfer -
to statement 359.

FORTRAN CODING FORM

q

tate- g FORTRAN STATEMENT
pentNo (= E
107 50/
1ot AISISII!GII\I11315P11TIOI lIINIDlEIXlxllLlnxlnllinll;nxnluxn;lt
N g’xoerlqgaNnDlEl}glnlxl|Jl|11Ll[n:xl||||'||11|lnn|nl\l
If the programmer wished to transfer control to statement 25, he
would write the first line above as:
. B.S An alternate way of using the assigned GO TO statement is to

follow the control variable with a comma, then by a pair of paren-
theses enclosing a list of statement numbers separated by commas.
This list includes all the statement numbers which the programmer
assigns to the control variable within the program.

The following example illustrates this form.

73 20

I W

T T A RS

Answer: ASSIGN 25 TO INDEX

-G21~

II.B.9
(Cont.)

FORTRAN CODING FORM

{s—-—v— C for Comment
tate- |+

m entN 0 ;oi i FORTRAN STATEMENT 50\‘
AR ASSIIGN 35I9 TlOIlIlI\i:Dl}i:])ﬁllll‘llll'lljjl'lLxlll o]
_1}_19.1_1 GO TOQ INDEX, (45,20,359), |\ v ol el iyl |
L5 | ASSIGN 20 TO INDEX by ly vt oyl
R AV AR A N A I A AT I I W A I A A AR SR A I Ll
15, izlE)lJ_Ptlllll}ll;l_l]lllIL_LJllvlllJllIllll 1
L1l GLOIE‘OIL310llJlllllLllll_llllJJll|Illllg_;llJ_ 1
L3L519. %fb‘xl*nnB‘xﬁl;ts PRV S T O SN N J N U U SO 00 DU U D N WY A B O B I)
Loldt Lllqu O v v by b by by bl 11
121911 %_”1 1 illllllSIJllllllllllJJlllllllLJ‘lIIJ L]
30 .| |(program contipues), , .,y uluuaatas il

In this example, where the second line "GO TO INDEX'", is followed
by a parenthetical list of statement numbers, a comma after the

INDEX may be used., True or false ?

In a program, the ASSIGN statement may assign a new statement
number to the variable (such as INDEX) as many times as the program-
mer desires, as long as the new statement number assigned is already

listed within the parentheses in the assigned GO TO statement.

false ?

True or

73 20
Pod el iy
[T T YR N
| I S U S A I
NV Y N O O O W O
| E N O U W P T
IR0 S W W A SO
IV W T T W S
TN S S A N T B |
}Jlll.;llll
| TN T 0 U DA W

Answer: True

Answer: True

—-9¢1-

III.B.10

0I.B.11

Notice that in the example in II1. B. 9 the variable INDEX is an
integer variable (the name starts with one of the letters I, J, K, L,
M, or N). Remember that only an integer variable may be used with
the assigned GO TO statement.

Is the following statement valid?

ASSIGN 1127 TO COUNT

Would changing the name of the control variable COUNT above to
ICOUNT make it an acceptable integer variable?

The only correct way to use the assigned GO TO statement is to use
the ASSIGN statement to put a statement number into the variable.
This tells the compiler to get the address in computer memory of the
statement number and to assign that address to your variable. Do not
try to give a variable the desired branching statement number in the
form of a computation for use with the assigned GO TO statement.

Which of these examples of the assigned GO TO statement is incorrect?
1.) ASSIGN 1127 TO ICOUNT
GO TO ICOUNT

2.) ICOUNT = 1127
GO TO ICOUNT

Answer:

Answer:

Answer:

No. The control
variable must be
in integer mode.

Yes

2.)

~Le1-

I11.B.12

nI1.B.13

The computed GO TO differs from the assigned GO TO in that
it relies on the value of an integer variable to select the proper
statement number from a list of statement numbers enclosed in
parentheses. The form of the computed GO TO is as follows:

GO TO (20, 30, 100), INDEX

In the computed GO TO, the integer variable must be non-zero,
and no larger than the number of statement numbers in the list.
The value of this variable is set by the program by ordinary
arithmetic statements and is used as a counter for selecting a
statement number according to its order in the parenthetical
list--first, second, third, etc. '

If N = 3, what will be the next statement to be executed?

GO TO (20, 3, 10, 100, 4, 37), N Answer:

If N=1, what wﬂl be the next statement to be executed? Answer:

10, the third
statement number
within the parentheses

20, the first number

-881-

m.B.14

In the following example, notice that the value of the variable N
is preset, or initialized, in the first statement, N =6. Then
later this value is computed, reducing it, or decrementing it, by
one, each time statement 30 is executed.

C for Comment

FORTRAN CODING FORM

WState-

o
anentNo,g FORTRAN STATEMENT }
slo. 50,
. N=6 ‘5
I S W U U A U N U T Y N Y U U0 U OO VN O OO O N WO W W N O WY 0 2O 0 A0 I O AU W WY B ¥
1115:1 G]Ol?o (20 3 110J’100’IL1317)1’ vl et e boeraal
L3l7ll Arzil]%.l111]1llli|l|11Alli)XL144L||llllJJllxllJl
30 N= N-
1 xkaJ:1111111111llillliLillljlixleJ1:1111JJ
i GIQLxTLQx|11511:411111111x11111111J11LLJ::11!11111
4 . 1:1L%/1CtlllIJJJIrin}Jll!llliJi'lnLiJxlix}nxlb:
it Gtoixr{lox:31011leJLxlxllr11(11411!1)L1J11rllxilll
glxonon A1=J lB‘—(CllLlljll[lilJ[.llLLJJIl'(flllJl b el 14111’
[OTO 390 1 v v v by sl vt v b s ooty aad gl
.Jlozz }A1=LJ%J+L1C1]Af;t!»g:nl:zx;l;x;;lljgll||11J141Ll
200 | program continuwes ~l~~- (ty o5ty b el ol

.In the coding above, the value of N is

not assigned but

73 K4
I A A
TS W N A R
| R N B R
4 S T S U L B B
| T T P R I

TR I RS

PR S

.
T WS O W S W U S N

lilllJJ_lll

LLKJIJ_A_I(

A

LLIIILLIlJf

| i
L)l’lJJJJ'

Answer: computed

—6¢I-

OI1.B.15

In the preceding example, you were using a simple kind of loop,
in which the various statements listed in the GO TO statement,
after performing some operation, send the program back to state-
ment 30 and to the line that follows it:

30 N=N-1
GO TO 15

these in turn return control to the GO TO statement, where the
newly computed value of N selects another statement number out
of the list. This looping will continue, statement by statement,
until some exit is provided. In this case, when statement 10 is
reached, it simply does not return the program to statement 30,
but merely drops down to the next sequential statement written
below 10.

Refer to the sample coding in IT1, B. 14, and answer the following
questions:

1.) Starting at the beginning, where N = 6, the GO TO statement
will send the program next to what statement?

2.) After statement 37 is executed, the value of A is ,
and the next statement to be executed will be

3.) After statement 30 is executed, the value of N is

4.) The next statement after 30 is executed returns control to
statement 15, where N now has a value of , and
selects statement to be executed next.

Answer:

Answer:
Answer:

Answer:

37, the sixth number
in the list within the
parentheses.

B*C
30

5, or 6 minus 1

B> U1

, the fifth statement

I0.B.15 5.) After statement 4 is executed, the value of A is .
{Cont.) and the next statement to be executed will be . ‘ Answer: B/C
GO TO 30
6.) After statement 30 is executed this time, the value of N is
Answer: 4, or 5 minus 1

!
;c; 7.) Again, the next statement after 30 returns control to statement
! 15, where again, N has a new value of , and selects Answer: 4
statement to be executed next. 100 (the fourth
statement)
I.B.16 There is no limit to how many statement numbers a computed GO TO

may have, and the numbers may appear more than once. Care should
be taken to ensure that the control variable is greater than zero and

not larger than the number of statement numbers within the parentheses.
For the following statement, what is the maximum value for LIMIT?

GO TO (23, 100, 120, 23, 456, 89), LIMIT : Answer: 6

If LIMIT were given a value of zero, control would not transfer to any
of the listed statement numbers. True or false? Answer: True

If LIMIT were given a value of 7, control would not transfer to any of
the listed statement numbers. True or false? Answer: True

“IeT-

1. B.17

oI.B.18

The only valid use of the computed GO TO statement is when the
control variable's value is defined by a mathematical operation (either
being calculated or set equal to a value). Using the ASSIGN statement
will result in erroneous operations.

Classify the following statements as either unconditional, assigned, or
computed GO TO statements.,

GOTOI

GO TO 32
GO TO KOUNT, (44, 27, 2879

s SN UU T I

GO TO (122, 547, 7, 945, 46), JSWITCH

Work exercise I, B in your workbook at this time.

Answer:

[NV N I

(N

assigned
unconditional
assigned
computed

oI,

. C

Q
Pk

mi.C.2

oI.C.3

Logical Expressions

A logical expression has a value of either false or true. The value
false has all bits set to zero, whereas the value true has all bits
set to nonzero, or one.

The value false has all bits set to , the value true has
all bits set to , Or . Answer:

The value of a logical expression may be tested by the program and

used as an on/off switch. -True or false? ‘ Answer:

~ Two forms of a logical expression are logical constants and logical

variables.

The logical constants are .TRUE. and . FALSE., which for .TRUE.
have all bits set to and for . FALSE, have all bits Answer:

set to

Zero,
nonzero,
one

True

one,
Zero

T =61

m. C.4

I, C.5

You have learned that a logical variable has the following
characteristics:

(1) It must be declared LOGICAL in a type statement.

(2) It can be subscripted like other variables,

"~ (3) Its value must be set to true or false by the program,

either by making it equal to one of the logical constants
(as shown in II. E. 14), or by other operations.

A logical variable must be declared LOGICAL in a
statement. '

A logical variable can be like other variables.

‘The value of the bits in a logical variable must be set to true

or false by the

Now we will see two other kinds of logical expreéssions;

- relational expressions, and the logical result of performing

a logical operation on logical expressions. Although these two
kinds of logical expressions look more involved, they still meet

. the basic requirement of having final values of either true or

false.

All logical expressions, of whatever type, must have values
of either or : '

Answer:

Answer:

Answer:

Answer:

type
subscripted

program

true .
false

~$E1-

.Mi.C.6 Relational expressions, thé next type of logical expression, show
the result of comparing two arithmetic expressions by use of the
following logical operators:

.EQ.
.NE.
.GT.
.GE.
. LT,

.LE,

Equal to

Not equal to

Greater than

Greater than or equal to
Less than

Less than or equal to

An example of a relational expression would be A. EQ.B, which
could also be written enclosed in parentheses, as (A . EQ. B),

if desired.

Two ways of writing the relational expression A is equal to B

are:

and

Answer: A .EQ. B
or
(A .EQ. B)

-Ge1-

Complete the logical operator for each definition

nr.c.7
Equal to o
Not equal to _______
Greater than e
Greater than -
or equal to . .
Less than ______
Leés'than or
equal to .

Answer:

.EQ.

.NE.

.GT.

.GE.

.LT.

98T~

II.C.8

In the example A .EQ. B, the relation of A to B is evaluated by
asking the question: does A minus B egual zero? M A and B
have the same arithmetic value, then the relational expression
A .EQ. B is true, and the value of the relational expression
would be true, or nonzero. However, if A should be greater
or less than B, then A . EQ. B would be false, and have a

value of zero.

Notice that the variables A and B above must not be logical
variables, but arithmetical, that is, they must be integer,
real, double precision, or complex variables. Whenever any
relational expression contains more than one type of arith-
metic variable, the entire expression is converted internally
according to the rules of mixed-mode arithmetic you learned
in Section II. C.

In the example [. LT. D, where I is an integer variable and

D is a double-precision variable (which you learned in

Section II is floating point), the value of I would be converted
to a floating point quantity by the computer, and the resulting
two floating point values would be compared, using only the
most significant half (the single-precision part) of D in the

comparison. True or false? Answer:

True

-LET-

n1.cC.9

ITI. C.10

Indicate the value, true or false, of the following relational
expressions, where K =4 and B = 4.0.

B.EQ.K value Answer:
B.NE.K value
B.GT.K value
B.GE.K . = value
B.LT.K v.value
B.LE.K value

Now the fourth and last type of logical expression, which of
course still has a resultant value of true or false, is what
we call the logical result of performing a logical operation
on logical expressions.

The logical expressions on which the logical operations are to
be performed can be any of the three kinds we have already
learned about: logical constants, logical variables, or
relational expressions.

A logical expression can be a logical constant, a logical variable,
a relational expression, or the result of a logical operation on any

of these. True or false? ' Answer:

True

False

False

True

False

True

True

“8€1-

1. C.11

The logical operators to be used with these logical expressions
are the three you used in Section II. F. However, in the present
case you are not allowed to use arithmetic constants or
arithmetic variables, but only logical expressions with the
operators. As you remember, the operators have the following
meanings:

.AND, This tests two expressions to see if they are both
true. The result is true if both are true, but
is false if either one is false.

.OR. This tests two expressions to see if either one
or the other is true. The result is true if
either one is true, but false only if
both expressions compared are false.

.NOT. " Indicates negation. This is true if the one
value it tests is not true (value of zero}, but
the .NOT. operator results in a value of
false if the expression tested has a value of
true. In other words, the resulting value of the
.NOT. operator is just the opposite of the value
of the expression.

=681~

II1.c.12

For example, (A .AND. B) is true if and only if A is true and B is
true (that is both A and B have all bits set to ones).

On the other hand, (A .OR. B) is true (value of ones) if either A or
B is true (bits set fo ones).

And (.NOT, A) will be true (have value of ones) if A is false, or not
true (has value of zero); but the expression (. NOT. A) will be false
(have value of zero) if A is true.

From the foregoing, figure out the values of the following logical
expressions: '

If A is true, and B is true, then (A .AND. B) has value Answer:

If Ais true,‘ and B is false, then (A .AND. B) has value
If A is false, and B is false, then (A . AND. B) has value
If A is true, and B is true, then (A .OR. B) has value

If Ais trﬁé; and B is false, then (A .OR. B) has value
If A is false, and B is true, then (A ,OR, B) has value
If A is false, and B is félse, then (A .OR. B) has value

If A is true, then (.NOT. A) has value

If A is false, then {,NOT, A) has value

True
False
False
True
True
True
False
False

True

-0¥%1-

nI.C.13

An allowable combination of these logical operators is . NOT.
combined with (and following) .AND. or .OR., such as in

A _AND. .NOT. B, and A .OR, .NOT. B, in which cases
the , NOT. is evaluated first, then the other operator is
evaluated. These could also be written A . AND. (.NOT. B}
and A .OR. (.NOT. B).

For example, A ,AND. .NOT. B would be true (have bits set to
all ones) only if A is true and B is false, or, in other words, A
is true and B is not true.

.NOT. can be used with itself only in the form ,NOT. (. NOT. A),
or .NOT. (.NOT. (.NOT. A)), in which the value would be cal-
culated first with the innermost parentheses, etc. For instance,
if A in the above has value true, then the innermost expression
(.NOT. A) has value false: the next .NOT, reverses the value

to true, and the outermost .NOT, again reverses the value to
false. As mentioned in 11, C,6, an outer pair of parentheses
around the entire expression is always permitted, but does

not change the meaning.

From the foregoing, figure out the values of the following
logical expressions:

If A is true and B is true, then (A . AND., .NOT. B) has value Answer:

If A is true and B is true, then (A ,OR. .NOT. B) has value

If A is true and B is false, then (A . AND. .NOT. B) has value

If A is true and B is false, then (A .OR. .NOT. B) has value

If A is false and B is false, then (A .OR. .NOT. B) has value

If A is true, then (.NOT. (.NOT. A)) has value

If A is true, then (.NOT. (.NOT. (.NOT. A))) has value

False

True

True

True

True

True

False

“wi-

m.C.14 We have seen in the preceding sections how the logical operators
.AND. or ,OR. and .NOT. can perform logical operations on
logical expressions. We have seen that a logical expression
can be any of the following: logical constants, logical variables,
relational expressions, and last of all the logical result of per-
forming a logical operation on any logical expression.

In all cases, the logical expression operated on had a value of true
or false, and the resulting value after using the logical operators ' ‘
had a value-of or . : ~ Answer: true, false

. C.15 The next, and obvious, step would be to use any desired kind of
logical expression with one of the logical operators (. AND. or .OR.
or .NOT.). In the form ; ‘ : '

(logical expression) .AND, (logical expression)

‘we could substitute any logical expression that we have been writing:

1.) A, B, G, K, etc., if the variable has been declared LOGICAL
in a type statement.

2.) .TRUE. or .FALSE.

3.) A.EQ. B-D 1 .NE. K(I0) (Remember, in relational
' A .GT. 16.0 I.NE. 7-K expressions, the operands--variables
K.LT. 16) INDEX(N) ,LT. 10 or constants--are mathematical, not
R(D) .GE. R(I-1) SUM .EQ. PARAM logical; only the result is logical))

3.0*X+6.0 ., LE, D-E ISUM .EQ. TPARAM

x44%

nI.C.16 Considering the definitions above, which of the following is not
a valid Iogical expression? (Assume that none of the variables
are logical.)

1.) A .EQ. B-D

2.) A=B-D

3.) PAY .EQ. TIME * RATE
4.y I.LT. 2

5.) 1.LT. 2.6

6.) A .EQ. .FALSE,

7.) 1.EQ. .31415E01

8.) 1.GT. -3.1415E+01

9.) 1.LT. 31415927D0

10) I.EQ. (15., 16.7)

Answer: Not valid:
2.y A=B-D
6.) A .EQ. .FALSE.

~€¥%1-

O1.C.17

If you answered correctly the question above, skip to III,C.19.
If not, let's look at each of the above examples, remembering
the definitions.

1.) A .EQ. B-D is a valid relational expression, using a valid
relational operator and arithmetic real variables.

2.) A =B-D is not a valid relational expression because the =
sign is not a valid relational operator. This expression
does not have a resulting value of false (zero) or true (all ones),
but rather is an arithmetic replacement, replacing the value
in A with another value that is the difference of B-D.

3.) PAY .EQ. TIME * RATE is valid, using a valid relational
operator, and arithmetic real variables.

4.) I.LT. 2 is valid, using arithmetic integer variable and constant.

5.) I.LT. 2.6 is valid, using arithmetic expressions, I being an
integer variable and 2.6 a real constant.

6.) A.EQ. .FALSE. is not a valid relational expression, because
both operands are not arithmetic expressions, since . FALSE.
is a logical constant. (Please review Section II, E. 14, where A
and K are declared logical variables, and then K = . FALSE.)

7.) 1.EQ. .31415E0%is valid, using an integer variable and a real
' constant. ‘

8.) ~ I.GT. -3.1415E+01 is valid, using an mteger variable and a
real constant. :

'9.) I.LT. 31415927D0 is valid, using an integer variable and a double

precision constant.

10.) I.EQ. (15., 16.7) is valid, using an integer variable and a complex
constant. The comparison will take piace between the variable and
the real part of the complex constant.

“¥v1-

Im.C.18 Let's put together some typical examples of logical expressions
and see how the true or false value of each is calculated:

1.)

2.)

A type statement has declared A a logical variable and another
statement has set A = . TRUE. ; now consider the logical
expression (A) .AND. (K .LT. 16).

The expression (K . LT. 16) could have the value true or false,
depending on the arithmetic value of K. Next, the true value
of A is compared with the true/false value of (K . LT. 16); if
both are true, then the logical value of the entire expression
is true, or bits are set to all ones; however, if (K .LT. 16) is
false, then the entire expression has the value false, or zero.

Another case occurs when relational expressions compare arithmetic
variables that have previously been given values by the program. For
example, assume that the program has set J, K, and L equal to

integer values. In each of the following logical expressions, the
relational expressions would be evaluated first, then their values would
be compared by the logical operators. Obviously, the possible com-
binations in this type are numerous.

J.EQ. 6 .AND. J .GE. K+L (J .GE. K+L) .AND. (.NOT. (L .EQ.

J .EQ. K .AND, K .GT. L J.EQ. K.OR. J.GT. L
J.LT. K.OR. J .NE. L J.LT. 12 ,AND. J .GE. 9

K))

-Gv1-

I1.C.19

1. C. 20

Indicate the true or false value of the logical expression when
the variables assume the values given:

IfB=8, K=1, then (B .GT. 6 .AND. K .LT. 4) has value

HB=3, K=1, " " " " " " " has value
If B — 3’ K — 4, A 1" o1 Tt 11 1" 11 has Value
EB=7,K=4, " ¥ n w0 hagyalye
'.vaB‘» = 7’ K = _3" v‘v' ‘ won 1 1 " " has value

IfJ=6, K=4, L=2, then (J .EQ.6.AND. J .,GE. K+ L) is
=6, K=4, [=2, then (J .EQ. 4 .AND. K .GT. L) is
IfJ=6, K=4, L=2, then (J ,EQ. K .OR. J .GT. L) is

If logical variable A has been set equal to true, then (.NOT. A) is

Work exercise III, C in your workbook before starting section III,D.

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

True

False

False

False

True

True

False

True

False

4

I1.D

OI.D.1

hI.D.3

IF Statements

The IF statement is a versatile control statement that can both

test 2 value and then direct the computer to choose one of various
courses of action, as determined by the value tested. In other words,
the IF statement can cause the computer to branch to some other
statéement instead of executing the next sequential statement.

The IF statement can cause the computer to skip the Answer:

, and to some other statement.

You have already seen how the programmer can use the GO TO state-
ment for branching. Now you will see how the IF statement determines
branching by testing arithmetic or logical expressions for some value.

The IF statement tests the values of or Answer:

expressions fo determine branching.

~To review briefly these expressions that can be tested by the IF state-

ment, and how they get their values, fill in the blanks in these lists:

1) The IF statement can test arithmetic expressions, which,
as you recall, are those that express one or more of the
five basic arithmetic operations:

Answer:

next sequential
statement, branch

arithmetic or logical

exponentiation
multiplication
division
addition
subtraction

-L¥1-

oL, D.3 2) The IF statement can be written another way to test

(Cont.) logical expressions, which you remember are those that
always have a value of either true or false. The four
types of logical expressions tested by the IF statement
get their true or false values as follows (you fill in the blanks):

a) The two logical constants have a value of zero or non-zero Answer: ,FALSE.
and are named . . _and . .TRUE.

b) The logical variable must be declared in a Answer: type
statement, and may be subscripted like other vamables. true, false
It is given a or value by
1. Setting it equal to one of the constants, Answer: logical

or by '

2, Giving it the value of a logical or Answer: logical

relational expression, or by

3. Settihg it equal to the or Answer: zero

value of an arithmetic expression. non-zero
¢) Relational expressions compa.fe expressions Answer: arithmetic
by means of the logical operators .EQ. , .NE. , .GT., .GE.
, LT, and . .LE.

d) - Other logical expressions are those expressions whose
value is the logical result of performing a Answer: logical
operation on logical expressions. '

-8%1-

TI.D.4

Now let us see how the IF statement tests these expressions to
determine branching, and how the IF statement can utilize the
GO TO statement to give it greater flexibility.

When the programmer uses the IF statement, the computer is
told in one statement what to test, what values to test for, the
choice of alternate statement numbers it may execute, and which
value will direct the computer to which statement number.

To test the value of a FORTRAN expression, either arithmétic or

logical, the programmer uses the statement. Answer:

The same IF statement will both test the expression and tell the

computer which to execute next. Answer:

IF

statement

vy
o
o
> bt
e

FEE

4

Ao m

L

0L

3

f=
LA

T

One—

t
b R
m -~ w
oy

4

o
3
i

¢
HE

UI.D.7

OI1.D.8

II.D.9

The Three-Branch Arithmetic IF.

The IF statement is very simple to use. The word IF is written
followed by an arithmetic control expression in parentheses and
then three statement numbers separated by commas.

I¥(expression) N(-), N(0), N(+)

Which of the following examples of three-branch arithmetic IF
statements are coded incorrectly ?

1) IF (A-2) 20 30 40
2) IF A-2, 20 30 40
3) IF (A-2) 20, 30, 40
4y IF (A-2), 20, 30, 40

The IF statement causes the computer to evaluate the control
expression, and, if the expression is negative, the first of
three branch options is chosen. If the expression is equal to
zero, the second option is taken. The third option is chosen
for a positive value. N(-) is the statement number which will
be executed next if the expression's value is less than zero,
N(0) if it is equal to zero, and N(+) if it is greater than zero.

For X = 5.0, which statement number will the computer branch
to after executing the following IF statement?

IF (X - 5.0) 100,200,300

If you wished to go to statement 300, you would have to set the value of
X to .

If your answers were correct, skip to III.D.11.

Answer: 1, 2, and 4

Answer: 200

Answer: X >5.0

-161-

O1.D.10

OL.D.I1 -

Oi.D.12 -

Since the first thing the computer does is to evaluate the control
expression, (X - 5.0) would be evaluated. For X = 5.0, this

result is . The three statement numbers represent
the three options for branching. The first statement number (100)
is the branch for a value in the control expression, but

in our example the control expression (X - 5.0) equals zero, so the
computer branches to statement number

The control expression may be as simple or as complex as desired.

It may be a variable that has previously been given a numerical value,
or it may be longer and contain its own sets of parentheses. It must,
however, be completely contained within the IF statement parentheses.

The following are valid arithmetic IF statements:
IF (X) 254, 100, 400
IF ((X + Yy**3 / (Z + X/2.)**2) 300, 400, 500

IF (X + Y) 111, 200, 200

True or false?

Notice the last IF statement in the above question. The statement
numbers for the zero and positive options are the same. This
means that statemert number 200 will be executed if the control

expression is greater than or equal to zero.

Write the IF statement which will branch to statement number 100
if (X +Y) is less than or equal to zero and branch to 200 if (X + Y)
is greater than zero.

Answer: zero
negative

200

Answer: True

Answer: IF(X +Y) 100, 100, 200

=-¢S1-

nI.B.13

The IF statement is valuable because it allows the computer to
operate in its most efficient mode, that is, in the performance of
repetitive operation. A simple example of this is to use the IF

_statement to control the number of repetitions in developing some

quantity.
You might wish, for example, to do some calculations repeatedly
until the resultant value reaches some desired limit, regardless
of the number of loops (repetitions of the calculations). In this
case, the IF control expression must contain this calculated value,
such as:
95 IF (X * Y) 111, 300, 300
111 X=X+1.0
GO TO 95

300 (program continues)

In the example above, the calculation that will be repeated is

If the resultant value of this calculation after each loop is

the program goes next to statement 111, where the value of X is
increased by

The IF statement will send the computer to statement 300 when the
result of X*Y is or

Answer:

Answer:

Answer:

X*Y
ﬁegative

1.0

zZero or greater

-gG1~

I1.D.14

Another kind of repetitive operation with the arithmetic IF uses a
different control variable that is not the result of your calculations.
Suppose that you wish to repeat the calculations a specified number

of times, regardless of the final value. In this case, you will use

a counter for loop control, which will be incremented (or decremented
if you wish) each time the loop is repeated until the counter, when
tested, shows that you have completed the desired number of loops.

In this case, the counter will be the IF control expression, as in this
example where I is the counter:

DIMENSION A(3)

. I:O
20 I=I+1

95 A(D) = (X + Y) ¥*3/(Z +Y/2.0)¥*2
IF (I - 3) 20, 30, 30
30 (program continues)
In the example here, when statement 25 has been executed the first
time, the value of () is , and the value of the control expression
(- 3)is . This will cause the computer to go to statement
After statement 25 has been executed the third time, [= , and the

value of the control expression I - 3 will be , which will cause the
computer to go to statement :

Answer: 1

¢ -2, 20
AnsWer: 3
0

30

“vSI-

mi.D.15

~———— C for Comment

Suppose you wish to use the three-branch arithmetic IF statement
to tell the computer to add up the first 100 numbers out of a large
array of real numbers, and to accumulate the total in a variable
named SUM. Then, after this is done, you wish the computer to
go on with the rest of the program.

Look at the following example:

FORTRAN CODING FORM

%iﬁfig%rl FORTRAN STATEMENT _50_
Qo U]
z;zL__D JME,NISIIIOINL?JN}\EIBIEIRISI(II;LOlg)LLL1_1 gt oo b gl o rad 9gy nlj
2 SUOME 00 b e b g b by llLJJllll
B L,=,11H.L¢...ll.l.xLu..L..“LuL.l..“Lu.lli
30 JEFE O - 200), 219,-29.40 T O IO O O A O O 0 O T
20, %[JM Lzl lSlUII\{.’—&(]:NII\dIﬁEIRﬁl(IIl)J pr g b p b ta p vyl pp Wud vppal
LAV 08t Fos LTSI VAR NP ATRFITITES ANIN T WA WA SO R AN
FETTEL . R TR T TN I AR TR TR NTA NLAN AR
20, , | |(pyogram coptiones) | y , \ y oy)y by ey el LU.Lf
ERRANETI R EN T AN IS IR TE RN N PSRN DR TS SR TL RNy |
Lo .L;JLU.M...I1.“1L.4ul.L_14,L.JL...11..L1J

In this problem, XNMBERS is the source array from which the computer
will get number at a time for adding in SUM. Now your
counter (control variable) I will do double duty: at the beginning of the
first loop, I= ,and since I tells the computer to get the number from
the "Ith" location in the array XNMBERS(I), the computer will now get the
number from the array. Likewise, during the fourth loop, the
number will be added, and during the hundredth loop the
number will be added.

»

7o)
= SOUERON

73

NS SRR
I A ER |

_LJL‘lllJA\l

I

|

L i B § o5 5 3

t
J_LXJIIIIILI

Lllll[llJl

| T O AT, W O

Answer: one

1

first
fourth

hundredth

-gG1-

OI.D.16

Still referring to the example in II1, D. 15, notice that at the beginning,
SUM was initialized to 0.0 before you started adding numbers to it.
Then the control variable I was "initialized"” to 1. This ensures that
when statement 20 is executed for the first time, SUM is set to the
value of plus the value of the number in
XNMBERS.

During the 50th execution of statement 20, SUM (containing the
accumulated total of the first numbers) has the th

‘number added to it, raising the SUM to the new accumulated total.

During the execution of the loop for the 99th time, the control variable
will have the value of , and statement 20 will add the th
value into SUM,

Then after statement 20 adds the 99th value into SUM, statement 30
increments the control variable from 99 to

Next the computer is sent back to statement 10, the IF statement, to

start the 100th loop. Now the value of the control expression (I - 100)

is , so the computer is directed to statement , where the
th number is added to SUM.

Notice that now, after the 100th number is added to SUM, the computer
again increments the control variable I, so that it now equals 101.

But, the 100 desired numbers have already been totalled in SUM, so you

wish to get out of the loop and go to the rest of the program. Will you?
Yes or no? _

Follow the coding. You next go back to statement 10, the IF state-
ment, where now I - 100 has the value of , so the computer will
branch to statement Does this take you out of the loop?

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

ZEYO
first

50

99
99

100

0, 20
100

yes

+1
40, yes

-961-

HI.D.17

This brings up the related question of how to initialize a counter
for a loop, and where to place your statement that increments the
counter. Look at the two examples below. Example 1 is organ-
ized like the sample in II.D.14 whereas Example 2 is like the
coding in III.D.15. Either plan will work, but look at their effect
on the IF statement and its statement number used for branching
if the control variable equals 0 (the second option).

Example 1 ’ . ' Example 2

r C for Comment ‘—-——-—-—- C for Comment
tate- | _ IState- |+)
pentNo 8 ment Ng

Cont

517 7

pr b v b v b e b b gl

I=0 Jlellzulnllxnxlnllllll

Ll

10

I

i 1111 pov b e L byl A lxl(lIxAI:Ol)lzxni‘?ll

] x4lol

20,

[

(any ar1thmetlc computation) 20

Ve b s o s Lo s o d Ll

(3ny pyithinetiq omputation)

M | 1 J

L

30

Lol

L IIFI(II 100) 11114101’1141011111 4.0, In—|I+|1111111e11111

14101 i

N

H

(?regrﬁm.c?l’%ﬁfm}eﬁ)u1““11;. | i G;QleOn ;3|O!| AN BT

TR

40 {program continues)
2 I SR BT A AR S AR R

ot

In both examples here, notice that the variable I correctly has the

value of before executing the first iteration of the computation Answer:
and it likewise has the value of ___ before executing the 100th

computation. But, in the two examples, the computer tests the

value of I at a different time relative to incrementing the counter.

In Example 1, the IF statement's second branch (if I - 100 = 0) is
to statement , but in Example 2 the second branch is to . Answer:

100

40, 20

L. D.18 The sequence of statements in the two examples in 11, D.17, repeated

here for convenience, differs as shown here:

Example 1
14_!
=
O
51017
om0 b by i | Initialize counter to O
A0 o =r+1 y iyt gy Increment counter by 1
g 2,0] |(any arithmetic computation) | Process the problem
30 [LE(5100)10,40,40, , | Test the counter **
J40| (Rrogramp contipyes) \ | .1

**If (I-100) is negative, continue the loop, go to 10.
If (I-100) is 0 or positive, exit from loop, go to 40.

-8~

Example 2

3 -

5=
e T S
2Ll b=l b b Initialize counter to 1
230 \LE(I-1,000)129,,,2,01,4,0, ; | Test the counter ***
2,0 |(any arithmetig computation) . pr;eegs the problem
20 =L vt gLy] Increment counter by 1

GO T O 30
1 SN S O T T N T O O B A SO |
tinues

L4J0 (progrg.ril F(znilnlj 1)1 T A N T

**X[f (I~100) is negative or 0, continue the loop, go to 20.
If (I-100) is positive, exit from loop, go to 40.

Look again at the two examples in I, D.17 and 18 and answer

these questions:

1) Suppose that statement 20 (the processing step in each
example) has just been performed for the first time,

In each example,

follow what happens after statement 20: the very next

time the IF statement tests the counter, in Example 1,

with the counter I set to the value of 1.

I= , but in Example 2, I=

Answer: 1, 2

-8G1-

m.D.18
(Cont.)

III.D.19

the Ioop when your control variable value is

2) Continuing this line of reasoning, suppose that the

processing (computation) has just been performed
for the 100th time (with I = 100): the very next time
the IF statement tests the counter, in Example 1,

I= , therefore, the control expression I ~ 100
has the value of , which causes the computer to
branch to statement , which in turn (does ?/does not?)

lead to processing another time.

In the same situation, in Example 2, after statement 20
has processed for the 100th time, with I =100, the very
next time the IF statement tests the counter, I = s
therefore, I ~ 100 has the value of , which causes
the computer to branch to statement , which (does ?/
does not?). lead to processing another time.

~ The two different situations in the examples just described reveal that,
if you test the contrel variable after you increment it, you must write
the branch statement options in the IF statement so that you exit from

ZEYTO.

However, if you test the control variable before you increment it, you
must write the branch statement options in the IF statement so that you
exit from the loop when your control variable value is

Z€ero.

-Answer: 100

0
40, does not

Answer: 101
+1
40
does not

Answer: equal to or greater
than

Answer: greater than

-6ST-

I3.D. 20

Notice that in the examples we have studied of the IF statement,

the result from the evaluation of the control variable was not saved.
However, if the programmer later needs the value of the expression,

he will have to write a separate statement setting the expression equal
to a variable. In the example in I, D.9, if the programmer needed the
result of the control expression (X - 5.0) for some other calculation, he
would write

Y=X-5.0
IF (Y) 100, 200, 300

Then he could later refer to Y in other statements, because he would
have saved the value of X - 5.0 in it,

-091~

ni.b.21

OI.D.22

OI.D. 23

The Two-Branch Logical IF

Both logical IF statements test logical expressions, which, as

. you recall, has only two possible values, true or false. One of

these IF statements, the two-branch logical IF, works the same
as the three-branch arithmetic IF except that the word IF is
followed by a logical expression in parentheses, and there are
only two branching options following the logical control expression.

The first option is chosen if the expression is true, the second if
the expression is false.

For X = 3.0 and Y = 4. 0, which option will be chosen by the following
logical IF statement?

IF'(X.GT.Y) 100, 200 Answer:

If your answer is correct, skip to III. D, 24.

In the two-branch logical IF, as in the arithmetic IF, the action the
computer takes depends on the result of the control expression. In

the above case X is compared to Y. If X>Y, the state of the expression
will be true and the first option, statement number 100, will be chosen.
But we see that for X = 3.0 and Y = 4.0, X is not greater than Y; there-
fore, the expression is false and the second option, statement number 200,

. is chosen.

200

191~

I1.D.24

I1L.D. 25

The One-Branch Logical IF

The second type of logical IF, the one-branch logical IF statement,
works differently from the other IF statements. Instead of giving a
choice of statement numbers for branching, one optional statement
itself is written on the same line, immediately following the con-
trol expression. This statement following the control expression
may be any executable FORTRAN expression, which the computer
will or will not execute, depending on the control expression.
(However, this executable expression should not be another logical
IF statement.)

Examples of one—bfanch logical IF statements:
IF X.GT.Y) AREA=Q* R ** 2
IF (RADIUS.GT.4.5.0R.ARC.EQ.1.7) GO TO 300
IF (A.OR.B) C = ,TRUE,

Which of these examples is not a valid one-branch logical IF
statement? '

a.) IF (A.EQ.B) GO TO 200

b.) IF (A = B) GO TO 200

c.) IF (A.NE, B) IF (A.GT.B) GO TO 50 Answer:

bandc

=691~

. D.26

L, D. 27

When the computer encounters a one-branch logical IF statement,

it evaluates the control expression first. Next, if the control expression
is true, the optional statement is executed. After execution of the
optional statement, if that statement does not cause a branch to another
part of the program, the next statement after the logical IF is executed.
However, if the control statement is false, the entire logical IF state-
ment is treated as though it is not there. It is disregarded and the next
sequential statement after the logical IF is executed.

For example, in the following coding, suppose the computer evaluates
the control expression.

IF (X.EQ.0.0) Y =100.0

GO TO 300

If X has the value of 0.0, the expression (X.EQ.0.0) is true; therefore,
the computer would next perform two operations:

1.) Y would be set equal to 100.

2.) Then the computer would go to the next sequential statement,
which would cause the program to branch to statement 300.

However, if X had some non-zero value (not equal to zero), making the
control expression false, the computer would next perform two cperations:

1.) The computer would ignore the instructions to set Y equal to
100.0.

2.) As above, the computer should then go to the next sequential
statement, which would cause a branch to statement 300.

-€91-

I1.D.28 In these examples of the one-branch logical IF statement, suppose
you ""play computer' and evaluate the control expression; then
indicate which statement you will execute next (either the statement
in the right end of the IF statement, or the statement on the next
line).

a.) Let X have value of 2.0

IF (X.GE.1.0) Y=5.0
GO TO 300 Answer: Y=5.0

b.) LetX have value 0f 0.0

IF X.LT.0.0) A =B-X
GO TO 300 Answer: GO TO 300

c.) Let X have value of -1.0; give branching options for
each IF statement:

30 IF (X.EQ.0.0) GO TO 200 Answers:
GO TO 100 For statement 30: GO TO 100
100 IF (X.GT.0.0) GO TO 300
GO TO 400 For statement 100: GO TO 400
400 XNEG =X
~ GO TO 50
. 200 OMEGA =X
GO TO 50
300 XPOS =X
50 (program continues)

-$91-

Im.D. 28

II.D. 30

The one-branch logical IF statement allows the programmer to
"slip in" an extra statement when conditions call for it.

Write the FORTRAN statements, using the one-branch logical
IF for the following:

When the logical variables A and B are_both true, add one
to the variable %(, then calculate Y =X . Otherwise,
calculate Y = X~ only.

Work exercise HI.D in your workbook at this time.

Answer: IF (A.AND,B)X=X+1.0
Y=X**3

-G91-

O E

m.e.1

.. 2

The DO Statement

It was mentioned earlier that the computer becomes a more efficient
device when it works in a repetitive mode. Because of this, program-
mers take great pains to use repetitive loops as often as possible (within
reason) in their programs. You have used IF statements to execute
repetitive loops, and will now see a more powerful tool for this, the DO
statement. All repetitive loops have certain properties in common:

1. There is an initial value for the variable that governs
-the number of repetitions.

2. The variable is incremented by some amount after each
repetition.

3. The program provides a means of testing the variable to
determine whether to repeat the loop or to exit from the
loop.

It is not surprising then to learn that a FORTRAN control statement
exists which automatically controls the above three properties of
repetitive loops. This statement is the DO statement. With one DO
statement, the programmer defines a variable, gives it an initial
value, sets the upper limit on the value of the variable, defines the
value of the increment and determines the set of statements to be
repeated.

A section of code may be repeated several times by use of a DO

statement. True or false? . Answer:

True

Im.E.3

II.E.4

-991-

I E.5

The DO statement provides a simple way to make calculations that
are quite complicated when done with individual instructions.

The DO statement does several things simply and automatically.

True or false? Answer:

The format of the DO statement is the word "DO" followed by the
terminus statement number and then an integer variable, called the
index variable, whose value will be initialized, incremented and
tested with each repetition. The integer variable is followed by an
equal sign and then three integers called the loop parameters which
represent the initial value, final value, and the increment to be given
to the index variable.

The three values following the infeger variable are the loop . - Answer:

For example: 500 DO 1001I=1, 21, 2

The above DO statement will be interpreted by the computer to execute
the statements from 500 through 100, with the variable I initially equal
to 1, repeating this series of statements as many times as necessary
until I > 21, with I being increased by 2 each time statement 100 is
reached.

How many values will I assume during execution of the above loop

controlled by DO statement 500? Answer:

True

parameters

11

-L91-

II.E.6

In the above example, I is initially set equal to 1. When statement
100 is reached, the increment 2 is added to I. If I is greater than
21, the next statement in sequence is executed. If not, the program
returns to the statement following 500. When statement 100 is again
reached, the process is repeated until I is greater than 2I. Thus, I
will assume the values 1, 3, 5. . . 19, 21 during execution of the
loop. When I reaches 23, the statement following 100 is executed.

.The section of the program which is going to be repeated under

control of the DO statement is called the DO loop. The last statement
in the loop is assigned a statement number. The DO loop contains the
DO statement, the ending statement, and all the statements in between.

The following example of a simple DO loop has an arrow showing the
loop structure:

SUM=0. 0 .
po1loo I=1, 21, 2
A@)=B@)-C@M+D()
E(D=F({)*12.0
G(DH=AMDM+ED
SUM = SUM + G(I)
—p 100 CONTINUE
(program continues)

The CONTINUE statement will be discussed later.

In the following example; an arrow similar to the one above would

point to statement . _ v Answer:

DO 20 ICOUNT = 2, 16, 1
A = B¥*2%D
ARRAY (ICOUNT) = A

20 CONTINUE

20

-891-

II1.E.8

Mm.E.S

The index variable is restricted to a simple integer variable. The

initial value, maximum value, and increment to be given to the index
variable may be either integer constants or simple integer variables.

If they are constants, they must be positive and non-zero. If variables
are used, they may assume positive, negative, or zero values. However,

" zero or negative index variables can generate many errors, and should

be avoided. On computed variables, tests should be made to prohibit
zero or negative variables from being used.

Detect the errors in the following DO statements:

. DO206X=1, 5, 2
DO100I=0, 40, 3

™

&

c. DO200L=1, B, 3
d. DO300J =1, K, (M+1)

If the incrementing value (third parameter) is 1, this parameter
may be omitted and 1 will be assumed. The following statements
are equivalent.

DO100J =1, 40, 1 DO 100J =1, 40

Are these statements equivalent?

DO100J =1, 40, 2 DO1060J =1, 40

Answer:

a. Index variable must be an
integer variable.

b. A zero constant is not allowed
as one of the loop parameters.

¢. The loop parameters must not
be real variables.

d. Although integer variables are

allowed, integer expressions
are not.

Answer: No. If the third para-

meter is omitted, it is
assumed to be 1.

-691-

. E.10

O E.11

The DO loop terminates when the incremented value of the index
variable is greater than the value given by the maximum value loop
parameter. If the initial value of an index variable is greater than
the maximum value, the loop will be performed once and then
terminated.

The following DO statements represent the beginning of three
different loops. How many passes will occur through each loop?

a. DO100 INDEX =1, 18, 2) Answer: a. 8
b. DO 200 LINK =5, 4 b. 1
c. DO 300 KAT =2, 20, 18 ' c. 2

Because the loop parameters may be integer variables, the programmer
can construct loops whose number of repetitions can be changed outside
the loop by computations., You will see a very effective use of this char-
acteristic when you study nested DO loops later in this section. (The
loop parameters may also be changed during the execution of the loop,
but it is not good practice to do so and avoidance of the procedure is
encouraged.) ‘

Can the loop parameters in this example be changed by outside
computations ?

DO20I=1, 20 Answer: No, because to be
changed, they must be variables
not constants as these are.

k]

=0LT~

. E.12

Let's look again at the reference in the DO statement to the ending
statement, such as statement 95 in the following:

SUM = 0
50 DO 95I=1, 20
INDEX(I) = I

95 SUM = SUM + INDEX(D)
100 (program continues)

Notice that statement 95, the ending statement, is an executable
statement, an arithmetic computation. This is a valid terminal
statement for a DO loop.)

However, there are some restrictions on what kind of statement may
be used to end a DO loop. In general, it must be an executable
statement, so this rules out all the non-executable statements you
have already studied, plus COMMON and FORMAT that you will see
later.

The end statement in a DO statement must not be a FORMAT
statement, DIMENSION statement, COMMON statement, or type

declaration. True or false? : Answer:

The ending statement in a DO statement must always have its own

statement number. True or false? Answer:

True

True

“TLI-

1. E.13

nI.E.14

Further, the ending statement referenced in a DO statement must
not be certain other statements you will learn about a little later,
including the PAUSE, STOP, END, and RETURN statements.

The ending statement must not be any of these three executable
statements:

1.) Arithmetic IF
2.) DO
3.) GOTO

Which of these statements would be forbidden as the ending étatement
for a DO loop?

DIMENSION . . .
IF (X+Y) 10, 20, 30
GO TO 250

X=Y+Z

LOGICAL . . .
PAUSE

DO 241=1, 10

- D U W RN
D N N

Now that we have listed what the DO loop's last statement cannot be,
let's see what is left that it can be:

1.) Executable statements are permitted, such as arithmetic
expressions (but excluding those we just listed above such
as GO TO, another DO, and the arithmetic IF statements).

2.) The all-purpose CONTINUE statement, which will be
explained in the next paragraph, is the most useful.

Answer:

All but 4.) are
forbidden.

—¢LI-

Ni.E.14
(Cont.)

OI.E.15

3.) The last statement of a DO loop may be a logical IF
statement. However, the beginning programmer should
be careful in using the logical IF as the ending statement.
The one-branch logical IF may change the desired flow of
the program, as will be evident in later examples of DO
loops. This can have a disastrous effect if nested DO loops
end with the same terminal statement. To be "safe rather
than sorry ', end each DO loop with a CONTINUE statement,
which may be preceded by either an arithmetic IF or a logical
IF statement.

Which of these statements would be allowed as a valid last statement in a

DO loop?
1.) X =X*(-1.0) Answer: 1, 2, 4
2.) CONTINUE

3.) GO TO 100
4.) ISUM = ISUM + J

To avoid ending 2 DO loop with a forbidden statement, FORTRAN provides -
the CONTINUE statement. This statement is a do-nothing instruction,
which causes no operation, but is always a valid ending statement for a

DO loop. It is also useful in that it makes the ends of DO loops easy to

find on program listings.

The CONTINUE statement is a - instruction. Answer: do-nothing

-8L1-

Oi. E.16

IO.E.17

IOi.E.18

Since the end staterhent of a DO loop must be indicated in the DO
statement, every CONTINUE statement must be assigned a state-
ment number.

A CONTINUE statement at the end of a DO loop does not require

a statement number. True or false? Answer:

CONTINUE statements may appear at any place in the program. When
not ending DO loops, they must still be assigned statement numbers,
but they merely pass control to the next sequential instruction.

CONTINUE statements provide statement numbers for branching, but

cause no operations to be performed. True or false? Answer:

A transfer to a CONTINUE which ends a DO loop is always permissible
from statements preceding the DO loop. A transfer to such a CONTINUE
from statements following the loop is permissible only if a reference was
made to the same CONTINUE in a statement preceding the DO loop.
Transfer to the CONTINUE may occur whenever required from within
the DO loop. »

Suppose statement 200 is a CONTINUE statement which ends a DO loop.
Which of the following are valid?

1.) Transfer to statement 200 from an IF or GO TO within ' Answer:

-the DO loop.

2.) Transfer to statement 200 from a statement preceding the
DO loop. ‘ '

3.) Transfer to statement 200 from a statement which follows
statement 200, when no other reference to statement 200 has
been made outside the DO loop.

False

True

1.) and 2.)

“PLT~

HI.E.19

To illustrate use of the CONTINUE statement, suppose we have a
series of 100 values of some function which have been stored
randomly in an array called X. [t is necessary to find the smallest
value of X and make it the first value of the array. (That is, the
smallest X must be X(1).) A program to search through the X
array would be:
50 DO100K =2, 100
IF (X(1) - X(K)) 100, 100, 200
200 TEMP = X(1)
X(1) =X(K)
X(K) = TEMP
100 CONTINUE
300 (program continues)

The DO loop illustrated here starts with statement and
ends with statement

Answer: 50
100

-GLT-

II.E.20

The first time through the DO loop with K = 2, the IF statement
compares the first X in the array with the second X. If the first

X is smaller or equal to the second X, the IF statement causes

a branch to statement number 100, which is a CONTINUE instruc-
tion. Because it is the last statement in the DO loop, the computer
would interpret the CONTINUE statement as an instruction to incre-
ment the index variable and continue processing the DO loop. If the
first X is greater than the second, the IF statement branches to
statement number 200, where the X values are interchanged, thus
putting the smaller X in X(1). This method assures placement of
the smallest X in X(1) when all the values in the X array have been
compared.

Did you notice how another variable called TEMP was used to help
interchange numbers (without losing any of them) by putting them
into new locations in the same array?

Suppose that in the preceding coding, the original value of X(1) at
the start was 4.0, and at the same time the original value of X(K)
was 2.9, thus causing the program to go to statement 200.

"Play computer" by indicating the value of each variable before
and after the execution of these statements:

before after Answer:
200 TEMP = X(1) TEMP
X1y =X(K) X(1)
X(Ky =TEMP X(K) |

4.0
4.0/ 2.0
2.0f 4.0

-9LT-

III.E.21 The CONTINUE statement allows the programmer to perform multi-
ple branches within the DO loop. In the above example, there would
be no way to repeat the DO loop if the CONTINUE statement was not
used. The coding following is the same as above, but with the
CONTINUE statement at the end deleted:

FORTRAN CODING FORM

f C for Comment
“S“:Q?QTO'”;] | FORTRAN STATEMENT |
T O7. 51)_‘; 173 30
= !
L1t DO IIOAOle12x’111101011l(1111L11|!11[1]1:x:l1-|xl'[EER AU S AR A
_I_L_L-i___l_.J_J !X (:11) 1—1X1 (1K|) t)V?l’n?l’lziexol T T T I TS N B MOt 00 DR U A B O A B N B l|\| TR AR AR AN i
\ 21010l TEMP ,= D<A 0 NN TR N S U U0 N ST N AN U VO WU VA VU VAN N UNOY VHON ST OO SO SO WO S N S S lJ_g‘ il Ly _;
Pl X(l) X(K)lx11|111~111114]1111|1111&11AlllillHI Lo by g
19‘1010 X(Kl)leEMl11111\1x1!1|11l1111111111rllxly:ll’l\ L leraa
Can you replace the question marks in the IF statement with state-
ment numbers which would accomplish the recycling of the loop if
X1 -X(K)y<0? Answer: No

Branching back to the DO statement would cause the loop parameters

to be reset to their values. Clearly, a "dummy'" state- Answer: initial
ment is required which would allow both branch paths to meet at the

end of the DO loop.

ni. E.22 The reason for the existence of the CONTINUE statement is to provide
a common finishing point for branches within the DO loop. There is no
limit to the number of branch paths which may occur within a DO loop,
but all paths must eventually lead to the statement marking the end of the loop.

In a DO loop, all paths eventually lead to the statement marking the Answer: end
of the loop.

=LLT~

IO.E.23

Look at the following examples, and answer the questions.

Example 1 Example 2
4 A =AQ) +B(, J) K=0
2 GOTO1 IF(K) 1, 10, 1
10 DO11I=1,5 4 AD) =AM +B(Q, J)
GO TO 4 2 GOTO1
1 CONTINUE 10 DO11=1, 5
30 (program continues) 6 GO TO 4
1 CONTINUE

30 (program continues)
1.) In Example 1, after the computer first executes statement 4,
control will next be transferred to statement , then to state-
ment , and then to statement

Will statement 10, the DO statement, ever be executed?

2.) In Example 2, after the computer executes the first two state-
ments, what statement will it go to next?

After this statement is executed, the next statement to be executed’

will be
After this statement is executed, the next statements in turn to

be executed will be , , then

Will statement 10, the DO statement, be executed in this example ?

Answer:

Answer:

-8L1-

ITI.E. 24

An example of the efficiency of the DO loop can be seen by reworking
a problem shown earlier, where we discussed how and when to
initialize and test the control variable in a loop using the arithmetic
1F.

{a) IF statement version: (by DO loop version:

5I=0 8 DO30I=1, 100
10 I=1+1 ; 20 (any arithmetic computation)
20 (any arithmetic computation) 30 CONTINUE

25 IF (1-100) 10, 40, 40 40 (program confinues)
40 (program continues) .

Notice that, in example (b) above, the statement DO 30 I=1, 100
does all of the following, which required separate statements in
example (a):

1.) Defines the counter variable 1.

2.) Defines the amount of the increment for the variable I.

3.) Initializes the counter variable I.

4.) Defines the maximum value for the counter variable I.
Notice that in (a) above the sequence of execution was to initialize the

variable, increment it, process the computation, and then test the
variable. In (b) above, this was done by the . loop.

In both examples, whenever the program leaves the loop, it goes
next to statement 40. In example (2) the exit from the loop is when
the variable is ___ (<, =, > 100. In example (b) the exit is when
the variable is (<, =, > 100.

Answer: DO

Answer: =

~8LT~

Im.E.24
(Cont.)

TI.E.25

When the programmer uses a DO loop, he (does, does not) have to Answer:

decide in what sequence he should initialize, increment, and test
the control variable.

The one advantage the arithmetic IF loop has over the DO loop is
that the control variable may be other than a simple integer

variable. True orfalse? Answer:

There are two ways for the program to leave a DO loop. A control
statement may cause a special exit (a branch to another part of the
program outside the DO loop), or the loop may be performed a
sufficient number of times so that the loop parameters will be satis-
fied and control will pass to the statement immmediately following the
last statement in the DO loop. If 2 DO loop is allowed to terminate
naturally, that is, the loop parameters have been satisfied, the
value of the index variable is not saved, and consequently is not
available for later computations. If the loop is left by a branch be-
fore the loop parameters have been satisfied, the value of the index
variable is available for subsequent calculations.

If the programmer wishes to save the value of the DO-loop control
variable upon special exit, he has the choice of either using the
control variable as it is, or of setting some other variable equal

to it. True or false? Answer:

does not

True

True

-081~

l. E.

26

In this program, each value in an array is tested, If it is zero or
positive, some processing is done, and the DO loop keeps cycling;
but, if any negative value is found, its location in the array (which
is also the value in the control variable) is saved, the loop is halted,
and a "special exit" is made immediately.

FORTRAN CODING FORM

C for Comment
d PUST 1
State- 2 FORTRAN STATEMENT \
zine'nu\or,o !
507.. 50! 73 20
| |
L A0 3011313:‘111’11MA)§11111ixxxnl|111l||111uxxlx:LLL‘ ;1l11 Ll
H .
o EF(ABRRAY(I N LM 000086 L b b a b L ooy L
i 4 ’61 AR;RJ‘AIY;(\II) F]ABBAIY(XII) ;‘-XTIAIB‘[LEI([II)I J I P | i l J U ! ') I T . N l_i ![1 A | R 1 i E
o 131 CIOLNlrr]'IlNIIJIEl AR U R V0 N0 T UANC WA U0 U T TS (0 U0 T T A AT NN WO SN 00 WO S O 0 OO ll‘; B Lt !
S A pr 1T‘O| 14v01l PRI T T N T VA V0% W AN T VAU U NN TN NG U N U U U U0 OO OO O O 11j, IR il lE
i - N M
LBy . ISAVE=L, v vy b s b ey by e bov IR ST A B Vo1 1
| rogram for negativ tu i
;vxsz; (P-iglxx(;)'i}glnex alxejs)x PR R0 N VA AT TN WO Y0 O A Y N T U U SO U O T | AR L2 1E
! H | .
Lot ’11|11Ilil1'1||i|1;|'11111111L'1z)uixl11llxx|l* oy gy Lt
’ i P ?
L)l -1x;{l111|11'111111’.x1111\1|1'11yx!;unllxlux“ P R
. i If-i :
oLt T TN A SO K U 0 N T TN VIS O A S S U N ST S S S O 0 U TR TR BTSN S BRI ! I
[1410I (Prpgqamlfquqcinlegap‘l’el Vla%uleq)l A | l 1' JE ! O S IO {] S S T | I b W TS D l E I R W T | J I 1

The DO loop is made up of statements and with Answer:

all the statements between these.

10,

-I81-

OI.E. 26
(Cont.)

Suppose that during the first iteration of the DO loop the value in
ARRAY(1) is tested by the IF statement and found to be positive.
Then the next two statements to be executed will be and

Suppose no negative values are found and the DO loop has completed
all iterations up to and including the value in MAX. Control is then
passed to the next sequential instruction following the CONTINUE

statement. This statement then transfers control to statement

On the other hand, suppose that, dufing any loop, the IF statement
found a negative value in ARRAY. The next statements to be executed
would be and

Are these two statements inside of the DO loop?

In this case, a "special exit" has been made from the loop without
satisfying the requirements of the DO-statement parameters. True or
false?

In this case, the variable ISAVE holds the value of I, which is the number

of the loop last begun, also the index of the negative value found in ARRAY.

True or false?

The main advantage of saving the value of I in ISAVE is that now the
variable I may be used elsewhere without destroying its contents.
True or false? :

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

Answer:

40

5, 20

True

True

True

=381~

hi E. 27 In the following exaraples of coding, how inany times will the DO
loop be executed?

v Answers:
a.) .. 1DO, 20 T=1 100 a.) 10
R JlIglzlllll'!llllllll_lll b.y 7
R RS B U RN O N O O A A A AU o A ‘
.1 [GIO O (5: 1°1 1201)1 1J111G| P
.0 I MIKE=JIGHE | , 111111y
b.) ... | |DO 30 I=31G,MIKE , , |.,,
fd I B ST U B G S R A Y S N U A
B0 [|CONDINUE | 4y gyt
2,0 | fmestofprograpy ,), |
c.) L { DO 20 1=6,2 c.) 1
e b B e
11l 14 A IBJ*II(I 1 121 T W N D I N S G ni:z: 2ytorsotatemen;1,
L2 GG TO L i Fhe CONTINUE statemefnt
0 » 1;10 G'Q 1, I=1,5 .. | ;sl;lgtlzl;;r;fed as part o
it 1011']-1'0114xnlv:|1111|||1
llLll CONTINUE ;.) 1 a1ty
1, 30] (Brogram eqntipues), \ |, 4, 1,
3 150 55, COMNTER=1, 0, 100,) ik oonstants are not

allowed).

—~g81~

II.E.28

A DO loop may contain within it one or more other DO loops. Many
DO loops may be "nested" within a DO loop. How many DO loops are

in each example here?

[_——)95 CONTINUE

=20 DO 95 I=. .

30 DOSJ=...

®

40

65

75

00

60

250
l-—)400

2300

— 10
—150
—— 45

—3 50

_ﬁgs

20 DO9%I=. ..

DOSSI=. ..

DO200K=. ..

DOo200L=...
CONTINUE

DO30OOM=. ..
DO400N=. ..

CONTINUE
CONTINUE

DO150IAC =. . .

CONTINUE
DOS50IBC =. .
CONTINUE

CONTINUE

Answer: 2 loops
8 loops

~$8T~

m.E.29

Nested (inner) DO loops must be entirely contained by the outer DO
loop; therefore, the terminal statement of the inner DO loop must be
performed either before the terminal statement of the outer DO loop,
or they must share 2 common terminal statement.

For each of the following examples of nested DO loops, decide if the
terminal statements meet one of the two requirements described

above.

E"DOI @rDOI @._Dpo1

=DO 1 e DO 2 ==DC 1
" terminal st. -3 2 terminal st. ' —DO 3
—-DO 3 ‘ | =} 3 terminal st.
—>3 terminal st. — DO 4
- 1 terminal st. L 4 terminal st.

—f>1 terminal st.

~DO 1
DO 2
DO 2

2 terminal st.

DO 4
£4 terminal st.

=31 terminal st.

Answer: @ Yes

Yes

@ Yes
Yes

-G8~

0L E.30

A nested DO loop can be considered as a single entity by itself

with the DO statement being the only valid entrance. Therefore, DO
loops cannot overlap, unless one lies entirely within the other. If
DO loops numbers 1 and 2 in the example here had an overlapping
configuration, when DO loop number 2 was satisfied, the program
would have to branch back into DO loop number 2 to execute the last
statements of DO loop number 1. This is clearly not allowed.

r—DO 1

DO 2

)1 terminal st.

L—32 terminal st.

Redraw this diagram to two possible correct configurations for
this example.

Answer:
a.) —DO1

DO 2
g 2 terminal st.

-3 1 terminal st.

b.) —DO I
DO 1

1 terminal st.

0L E.31 Generally, transfer within nested DO loops may occur from inner
loops to outer loops freely with, however, one exception. That is
the transfer to the terminal statement of an outer loop. This is
subject to the restriction discussed in section IfI. E.18 of this manual.

In the converse situation, transfer from an outer to an inner loop
can occur only down to one.level of nesting, and then only through
In other words, in the transfer
from an outer to an inner loop, the DO statement of any nested DO

the DO statement of the inner loop.

loop cannot be skipped over.

~981-

DO1

DO 2

: inner
2 CONTINUE loop
1 CONTINUE

DO1

DO 2

DO 3 o

: } inner
3 CONTINUE / 1°°P2

2 CONTINUE

1 CONTINUE

outer
loop

inner
loop 1

" outer
loop

(@) permissible - a transfer
is permitted from inner
to outer loops.

@ permissible ~ a transfer

is permitted from inner to
outer loops.

=181~

mEest () Dot
{Cont.) .
DO 2

DO 3

3 CONTINUE

s

E—..% PR
1 CONTINUE

Dot

[5o
Thos
3 :CONTINUE
2 (:ZJONT]INUE

1 CONTINUE

|

© -2 CONTINUE

|

@ permissible - a transfer

is permitted from inner to
outer loops.

not permissible - a transfer from an

outer loop to an inner loop, one level

“down, must be to the inner loop's DO

statement. The "DO 2" statement,
since it initiates a nested DO loop,
cannot be skipped over in a transfer
from an outer to an inner loop.

~881-

I E, 31
(Cont.)

;DOl

DO 2
Lonos
3 CONTINUE

2 CONTINUE

1 CONTINUE

DO 1

DO 3
3 CONTINUE
2 CONTINUE

1 CONTINUE

§

}

permissible - a transfer is permitted,

Level

one level down, from an outer to an
inner loop through the DO statement of
the inner loop.

not permissible - a transfer from an

outer to an inner loop is not permitted

more than one level down. The "DO 2"
statement, since it initiates a nested
DO loop, cannot be skipped over in'a
transfer from an outer to an inner loop.

-681-

The power of the nested DO loop is well exemplified by the following

|
.
|
(
,1

" OI.E.32
sort program. This program will sort an array containing random
numbers into one which is in numerically ascending order. This is
accomplished in only eight FORTRAN statements no matter what the
size of the array.
For illustrative purposes let's assuine we wish to sort an array of
five values. For clarity, and also because programs should be
written this way, comments will be included in this sample sort
program.
d - C for Comment FORTRAN CODING FORM _
“Stggfgo“; | 'FORTRAN STATEMENT =
Eaatt s A ' 50
, ; ‘ 1'
,,LJ_Ll!DlllMEPI\]‘xSIION Xl(lsl)lljl¢'!LL|nlx1L111L11[Hlxl|1lxl]}
_C_J_J_J_.l__?..,‘llj,]_;sl pn ERI PO LOOPF PAE IN1E§| 1T1H|E| i[NlDI!CfE;SI | l]{
Co 1) 1 OF T HE, NlAlI-{UlEv\x T.Q BE, | ‘QMHABIEDI ST SEUT SN AR NS B SR 1%
Llll! l’lllIlllll!lllll‘|.[l_[lllll‘llllllillllllJll!!
Jlxl?biolxlooNl!ll’llqﬂlileIxII1111'1!1‘1[|'11(1!|11!l¥
|
ll'lgJl_lN!'-h]illl‘xlltll‘lxllllll'lligl[[lll{l)(llJJill;
! o
eyt va ey JHIS, INNER DO L0, QP COMPARES) X;(N)ls
Cl!L11 ol gl WITH XL KD \A(NIDI 1I IEFCHANGES‘l L 1L'
gl [: SI | I { lvl vl lVlALUE WHENI XI(KI)IA SI ISIMAILII-QERI ot 1) lJ
Cilllg [S S R | ITHAI Xl(!Nl)l'll‘!lliiil')(Jlllll!lll{
L!lliDIOll]'OOllKlJl’lllJIlL!I»IL!]I]li]Il!llIl[lliglll“
AN I I S U A O ;THII§|${P1A1T1E|MEN:TI COMPARES, | | bt gl
RN IrE(XK‘JN')z-;XMxK)) 400,100, 200 ,,},, PUTI SRR AR B!)1 J
I ' ol THfElstx SlTxﬂElleElNlT:SI IIJI\I;I‘IEF{'(:II-IIIXI‘N;QEI L
200 [TEMB=X (N ;v b va bbb e b b vy
ll!-X(JN!)FXA(K)lI'l'l]llu‘[lJ;llI!lllll!lJLllllillll
llLl‘X(K')ELTIEMPllllf{!lllllAl_llLlllLlllll¥IIII!vl!ll
1OdClolN'IEIJl\Tinl|xxx'f1|:11xz|xl'nlJ_Llr’xxx{vn:;!njlfl

73 30
Lol i
Ly L
Illl bt

]
L1 LAl
L 11
[
“11! RN
[]
I
[S W Al
L1 Lt
t
I;J_(L 1.1
—
[
Ll g Lo
[
LAt T
rll_y L
[T
Ll Lo
3
| 1
I
i1t L i
Hotd I
l’]IJi | S
!
!
_'"14& [

~061-

NI E. 32
{Cont.)

Let's follow this program using actual numbers. Assume we wish
to sort the following array.

X(1) = 22.0

L UX(2) = 47.0
COX(3) = 3.0
| X(4) .= 40.0

X(5) = 17.0

In this sort program the outer loop defines which values in the array
are to be compared and interchanged by the inner loop. At each
completion of the outer loop one value has been sorted out as the

- lowest of the values compared and properly positioned in the array.

After completion of the first pass through the outer loop, the smallest
value of the array, in our sample case, X(3), will now be in position
X(1) of the array, and the value formerly in X(1) will be in X(3).

Up to this point, this program has operated exactly like that in III. E. 19,
which placed a value only in the first position of the array. But now we
go a step farther, because after the second pass the next smallest value,
X(5), will be in X(2) and so on to completion.

- In the table on page 193, each line across represents the array after one pass
“through the inner loop. The logic of the program is followed in that the

indices for both the outer and inner loops are indicated, the compare is
shown, the interchange of values, when necessary, is indicated, and the
current status of the array is given. The values in the array which are

| compared are indicated by being underlined. When the outer loop is

completed, one more value has been sorted and positioned. The value is
circled when this occurs.

~161~

0. E. 32
(Cont.)

Before you answer the questions about the table which follows,
notice that the problem here is much like that in III. E.19 except
that here you do not stop after finding the smallest value, but next
go on to find the second-smallest value, then the third-smallest
value, and so on. Refer to the preceding coding and the table that

~follows, and answer these questions:

a.) In the present problem, the smallest value considered in any Answers:
‘comparison always ends up in X(}, and the value compared
to it is in X(). ‘ a.) N, K

b.) During the first iteration of the outer 1oop, the value of N is

;- therefore, the smallest value found will be stored in

X() , . . b’) 1 > 1
c.) During the second iteration of the outer loop, N = ,. and-
J= (which is also the initial value of K). : c.} 2,3

d.) This means that, during this second iteration of the outer loop,
the first pair of values to be compared--X(N) and X(K)--will

be X({) and X({). o d.y 2, 3
e.) Therefore, during the second iteration of the outer loop, the
smallest value will be stored in X(N); N = . e.}) 2

f.) Because the outer loop on each iteration increments the values
of N and J, the low value put in X(N) during any iteration is left
. untouched during subsequent iterations and is not used in any
future comparisons. True or false? f.) True

-561-

L E.32
{(Cont.)

g.)

After the first three iterations of the outer loop have sorted

the three lowest values and stored them in X(1), X(2), and X(3),
the fourth iteration compares the values in X(4) and X(5).
Therefore, four iterations of the outer loop are sufficient to

: sort and store five values, and you can write: N=1, 4 as the

| . outer 1oop s varlable True or false?

h.)

k.)

if you write the outer loop's variable as N=1, 4 to compare five
values, how should the same variable be written to compare 50
values? To compare 100 values?

In this program, the outer loop with its DO statement selects the:
values to be compared and identifies the storage location for the
low value found; whereas the inner loop does the comparing and, if
necessary, interchanging the values. True or false?

The coding at the beginning of this problem would work equally well
if you were to delete from the outer loop the statement J=N+1 and,
instead of having the inner loop set K equal to J, write

DO 100 K=N+1, 5 as the inner DO statement. True or false?

Notice that the control variable for the outer loop has a maximum
value of 4, whereas the inner loop's variable is always one integer
higher (both initially where it is equal to N+1, and in its maximum

- value of 5.)

This permits the inner loop's control variable to select, for
comparison with the array value selected by the ocuter loop's
variable, the next value beyond the first, and then the next value
beyond that one, and so on. In this way, the first selected value
is never compared to itself. True or false?

g.) True

h.) N=1, 49
N=1, 99

i.} True

j«) False. A DO parameter
must be a simple variable
or constant, not an
expression.

k.y True

€61~

1L E. 32
(Cont.)

®

Oute_r Loop Inner Lpop Compare Interchange Current Array Order
N J K X(N)-X(K) If Positive X(1) X©@ X3 X4 X5
22.0 47.0 3.0 40.0 17.0
1 2 2 X(1)-X(2) None 22.0 47.0 3.0 40.0 17.0
3 X(1)-X(3) 22.0& 3.0 3.0 47.0 22.0 40.0 17.0
4 X(1)-X(4) None 3.0 47.0 © 22.0 40.0 17.0
5 X(l)-X(é) None 3.0 47.0 © 22.0 40.0 17.0
47.0 22.0 40.0 17.0
2 3 3 X(2)-X(3) 47.0 & 22.0 5.0 22.0 47.0 40.0 17.0
4 X(2)-X(4) None 3.0 22,0 47.0 40.0 17.0
5 X(2)-X(5) 22.0 & 17.0 3.0 17.0 47.0 40,0 22.0
47.0 40.0 22.0
3 4 4 X(3)-X(4) 47.0&40.0- 3.0 17.0 40.0 47.0 22.0
5 X(3)-X(5) 40.0&22.0 3.0 17.0 22.0 47.0 40.0
o - @ 47.0 40.0
4 5 5 X(4)-X(5) 47.0& 40.0 3‘.0 17.0 22.0 40.0 41,0
| Final Arraj .. 0 @

%61~

i E,.33

II. E. 34

Rewrite the program in II1. E. 32 to sort an array containing 100
values. ‘

Work exercise HI., E in your workbook before starting section IIL.F,

200

100

Answer:

DIMENSION X(100)

DO 100N =1, 99

J =N+l

DO 100 K=J, 100
IF X(M)-X(K)) 100,
TEMP = X(N)

X(N) = X(K)

X(K) = TEMP
CONTINUE

100, 200

-G6T-

oL ¥

I F.1

O F.2

Other Control Statements

There are a few other control statements, optional or required,
that do not affect the program logic, but that the programmer may
or must use for special purposes. These are the PAUSE, STOP,
and END statements.

. The programmer may wish to have the execution of the program

stop.at a given place for any number of reasons, perhaps fo see if an
error may have been detected in the data, or he may wish to have the
operator perform some operation on the computer console, etc. The
PAUSE statement stops all program execution. When this occurs,

the operator is given the option to either proceed or terminate the
program. If the operator elects to continue the program, he enters
this decision through the console and the program proceeds with the
statement immediately following the PAUSE statement.

(NOTE: At some installations, a PAUSE statement is not allowed
due to the fact that it stops computer operation. Check with your
installation to see if the PAUSE is legitimate.)

=961~

OI.F.3

Or.r.4

The STOP statement terminates program execution and causes control
to be passed to the monitor system.

The STOP‘ statement 1s effectiv_é only during execution of the prbgram.v

True or false?

Because there may be more than one STOP statement in the program,
the STOP statements may be numbered so the programmer will know
which STOP occurred. The STOP statement is written STOP N where
N may be as many as five numbers which are restricted to the digits
zero through seven. If no number is written after the word STOP,
the number is assumed to be zero.

Which STOP statements are valid? Which are not, and why not?

a. STOP 1003
b. STOP 1181
c. STOP 2A
vd.‘STOP,101
e. STOP 19
f. STOP 007

g. STOP

Answer: True

Answer:

a. valid

b. 8 is not allowed

c. letters are not allowed
d. comma not allowed

e. 9is nof allowed

f. wvalid

g. valid

~L6T-

MmL.F.5

The END statement is mandatory, and it does exactly what it says,
it defines the end of a program or of a subprogram. The final state-
ment of a program or subprogram must be an END statement. When
a source program consists of a main program plus one or more
subprogram, then each of these parts must have an END statement
as the last statement. The opening statement of another subprogram
will follow immediately after this. For example:

PROGRAM

°

STOP

END
SUBROUTINE

END
SUBROUTINE

°

END

The word END may be followed on the same line by the name of your
program, if you wish it for your own convenience, but the compiler
will ignore the name.

The STOP statement terminates execution of a program.
The END statement terminates compilation of a program.
THIS IS IMPORTANT!!! '

-861-

IV. A

IV.A.1

Introduction

All the programming skill and hardware technological advances
available would be completely useless if there were no way for the
computer to communicate its "answer" to the user. Furthermore,
supplying data to the computer would be extremely tedious if the
programmer needed to code each piece of information into the
program. Fortunately, there are convenient ways for the user and
the computer to exchange information. Such exchanges are common-
ly known as "input/output”, or "I/O". The user "inputs' data and
instructions, the computer "outputs' results and commentary.

Cards into which data has been keypunched is a primary means of data

input. There are 80 columns (spaces) per card and all 80 columns may

be used for data. FORTRAN coding forms are used when writing data

and, since all 80 card columns may be used, the 80 columns of the FORTRAN
coding form may be used also.

Output to the printed page is limited to 132 characters per line.

Several input and output devices may be utilized by a FORTRAN
program, the most common being card reader, card punch, printer
and magnetic tape. The computer uses the card reader to obtain
information from punched cards; the card punch to output informa-
tion onto cards; the printer to output information in printed form; the
magnetic tape both for reading and for writing information.

Of the above four devices, and are input devices, Answer:

while , , and are output devices.

Card reader,
magnetic tape -
Card punch, printer,
magnetic tape

-66T~

Iv.B

w.C

v.C.1

IV.C.2

Basic I/0O Statements

The general form of the most simple 1/0 statements is

READN, L
PRINT n, L

where n is the statement number of the FORMAT statement.
and L is the list of variable names of the values to be input or output. .

A FORMAT statement is a FORTRAN statement which describes the format
of the data to be input or output. (To be discussed in v.D.)

Section IV. N will give full discussion of /O statements. The definitions above
should be sufficient for now.

1/0 List

This list tells which data items are to be transmitted, and in what order, i.e.,
from left to right.

The part of the 1/O control statement that specifies which data items are

to be transmitfed is the . Answer:

The length of the 1/0 list is restricted only by the limit of 19 continuation
cards. Each item except the 1ast is followed by a comma, and may be a
simple or subscripted variable or an array name. ‘

list

-003~

v.C.2 Of the following five items, which are acceptable in an I/O list?

(Cont.)
A. XYZ Answer: A, B, D, E
B. IFLAG
C. 24CPS
D. ARRAY (1, 4)
E. INDEX (I)
1v.C.3 In the preceding question, item C is not acceptable in an I/0 list
because it is not acceptable as a FORTRAN variable name.
Iv.C.4 If an item in an I/C list is to be subscripted, the subscript
must be of the form (c * 14 d) , where ¢ and d are positive
integer constants or zero, and I is a simple integer variable.
Which of the following subscripts are unacceptable in an I/0
list? ’ Answer: B, E
A. (2 *KOUNT - 1)
B. (INDEX (3))
C. (@O
D. 1+1)
E. &)
Iv.C.5 If you missed this one, remember that a variable used as a

subscript may not be subscripted itself, and must be integer
rather than real.

~106-

Iv,C.6

v.C.7

Arrays to be input or output may be handled in several ways. If the
array name appears in the I/0 list without any subscripts, the entire
array will be transmitted, according to the size specified in the
DIMENSION statement, and having the first subscript varying first.
For example:

DIMENSION MATRIX (4, 4)
READ 10, MATRIX
10 FORMAT (4E16. 8)

would read from cards 16 quantities according to the FORMAT
statement which will be described in the next section. The
quantities are stored in the array MATRIX, the first going into
MATRIX (1, 1), the second into MATRIX (2, 1), the third into
MATRIX (3, 1), the fourth into MATRIX (4, 1), the fifth into
MATRIX (1, 2), the sixth into MATRIX (2, 2), etc., until finally
the sixteenth would go into MATRIX (4, 4). '

If ARRAY has been dimensioned (5, 5), how many quantities would
be written by the statement PRINT 14, ARRAY?

Which would be the first quantity written ?

Which would be the last quantity written?

Which would be the twelfth quantity written?

Remember, the first subscript varies most rapidly in this kind
of array transmission. ‘ ‘

Answer:
Answer:
Answer:

Answer:

25
ARRAY (1, 1)
ARRAY (5, 5)

ARRAY (2, 3)

-%0¢-

Iv.C.8 Arrays may also be specified in whole or in part in an I/0 list by
an implied DO loop, such as (A (), I=1, 10). If this implied DO
loop appeared in an input list, ten items would be read into array A,
beginning at A(1) and ending with A(10).

Nested implied DO loops such as
READ 30, (HR (L, M), L =1, 50), M =1, 4)

would cause data to be input in the same order as is illustrated in the
following nested DO loop. This is the DO loop that is implied.

DO100M =1, 4
DO100 L =1, 50
READ 30, HR (L, M)
30 FORMAT (E 16.8)
100 CONTINUE

How many quantities would be transmitted if the following implied DO
loops appeared in an I/0 list?

A. X (KK), KK=1, 6)
B, ((Y(, §),Jd=1,4,2),1=1, 3)

Answer: A. 6
B. 6

~§0%-

Iv.C.8

Write the DO statements which are implied by the above implied DO loops.

{Cont.) A.
| ! !
FERS| PR S0 W SO VU N0 N TS G N T WU T WO A WA T A O A Y U0 T BN WA YO T W OO0 WY WA W e 1) ullxxinlﬁ_{_;
PETIFIN R SV IUT DN SN SRS U A ST APIN AN SUUTN T A SS U RO SIS A SR ,,Lnl h“g.Luug
L1y FUN U SNSRI S A SN 0 T AR SN N A WU SVE AL G U AN S A IS TR S ST AR AN A SR A S :’lJLJlillLJ%
L1 1 RIE.:‘A&]DII“;;O:’LI)S&((KK)I! TR AT 0 00 U0 Y OO0 S Y Y L VT S (U 1 SO S S O SO O iixxlllrxzz'{
- 30| [EORMAT, (B18,.8), |, 0ot voaloeelonaslyiil] IR
00 IGONTBINUE | 50y s Ly g T e be e b aa gl a byl e d

Answer: DO100KK =1, 6

B.
Ll PRI ST Y NS S S IO SAPU S A ST A SVI W B WUA SR BUS0 VE SO x::li ..L_].._L,..l_._!_.{_J__L..J_,_L_.E
L1 g FIRON 0O T Y O S YV VO O N0 S U O S S0 0 6 T 00 A N UG DU T W0 AN N SO0 N DO A A Lyg Lilijlé
[N v v b e g e b v b s b gy b ey bogogg g ! ’1111l.f!1£
o | READ 30, Y{I,d) U N U0 YUY S O S YU Y S DO Y SO0 ST A0 TS TG T AN AU SO0 WO htx:t'!llf
11 u30 L IEMORMAT ((B16,.08 1 0 v Loty g adaa ol il |v11L ;[Lxlllllll%
10,0 CONGINYE | 1, VIV N TV 0 W 6 O U O W O W W A O O S BT 00 O R R A S A oo o bl

Answer: DO100I=1,

3

DO100J=1, 4, 2

-$0%-

v.C.9

w.C.10

v.C.11

Iv.C.12

Note that when an implied DO loop is used in an I/0 list, a set of
parentheses must enclose the array name and the DO-loop parameter
specifications.

Each subscript on the variable requires DO-loop parameter specifications
and a set of parentheses.

Suppose array CAT has been dimensioned (3, 3, 8). To read in all the

- elements of the array, varying the first subscript first, the second

subscript second, and the third subscript last, what would the implied

DO loop look like? Answer:
((CAT(I, J, K), I-1,3), J=1, 3), K=1, 3)

Of course, in the answer to the above question, any acceptable variable
names could be used in place of I, J and K. But it is important to note
that for three subscripts there are parentheses enclosing three sets of
DO-loop parameter specifications, and each right parenthesis except
the last is followed by a comma.

Example:
DIMENSION RAT (6, 8, T)
READ 10, RAT (1, 3, 5), RAT (2, 3, 5), RAT (1, 4, 5), RAT(2, 4, 5), RAT (1, 3, 6), RAT(2, 3, 6),
1RAT (1, 4, 6), RAT (2, 4, 6
10 FORMAT (4 E16.8)

Rewrite the above input statement using an implied DO loop to accomplish the same result,
Answer:

READ 10, ((RAT(L, M, N), L=1, 2), M= 3, 4), N= 5, 6)

Work Exercise IV, C in your workbook at this time.

~G0¢g-

IV.D, 1

Data Formatfing

Although most computers are binary, dealing with, say, ones and
zeros only, most computer users prefer to think in terms of alpha-
betic and numeric characters. A term used to mean a mixture of
alphabetic and numeric characters is alphanumeric. To satisfy
both computer and user, there are several types of data conversions
available in FORTRAN. If the programmer wants any of these con-
versions applied to the data transmitted by his list, he provides a
FORMAT statement, specifying the precise type of conversion for
each item in the list. '

The FORMAT declaration is a non-executable statement, may appear
anywhere within the program, must have a statement number in eolumns
1-5, and be of the form

n FORMAT (specifications)
where "n" stands for the statement number, and "specifications" will be
explained shortly.

What fault do you find with each of the following FORMAT forms?

FORTRAN CODING FORM

tN
}nen‘ No

’-———— C for Comment
State— - [+

'
.0
@

FORTRAN STATEMENT
7 50 73 a0

EORMA{T!(MTWAJlI!l]IJY]iI!Illllftt«:!) IR N R

Answer: A. No statement number in 1-5

At vt
B.| 111100 ELQRM!AIT;l‘“i!!lanl{lL1141Lx|11!;1:¢l;11;!111|l—\ [T WS A A
C.L,_L._I_Jlﬂ;__(lv1y7.'||i1||1|)111le:;111;1{11>1|1!||111:11:[% TS O Y SV
A NN NN RN e 1 TR S T |
A.
B.
C.

C. "FORMAT" missing

B. No parentheses around specifications

~90%~-

IVv.D.3

The conversion types available are

Ew.d Single precision real number with exponent

Fw.d Single precision real number without exponent

Iw Decimal integer

Dw.d Double precision number with exponent, (See VI.A)

Gw.d Single precision real number with or without exponent (See VI.B)
Ow Octal integer (See V1.I)

Aw Alphanumeric (See v1,(q)

Rw Alphanumeric (See v1.H)

Lw Logical (See V1.C)

nP Scaling factor (See V1.D)

Complex data items require a pair of consecutive Ew.d or Fw.d
conversion specifications for each complex value. In addition to
the conversion specifications, there are four editing specifications:

wX Spacing of card columns or printer position

wH Heading and labelling
or
*oLLE Heading and annotating
/ Begin new record (one card or one printed line

constitutes a record

In the foregoing, w and d are unsigred integer constants; w specifies

the field width in number of character positions (card columns or printer
spaces) and d specifies the number of digits following the decimal point
within the field.

-L0%~

IV.D.4

iv.D.5

Iv.D.6

Belore considering the individual conversion specifications you may
wish to see a pair of typical I/O statements together with their
associated format specifications:

READ 100, A, B, C
100 FORMAT (F5.2, E10.4, F7.5)
PRINT 101, A, B, C
101 FORMAT (3E15.5)
Should this sequence occur in a program, the instructions would cause
three quantities to be read by the card reader according to F5.2, E10.4, and
F7.5 specifications in that order, and stored in A, B, and C,respectively.
Then the printer would print on a new line of the output paper the three

quantities A, B, and C, each in E15.5 format. Note that in each I/O
statement a comma follows the format number,

- At time of output, the least significant digit of an output value is rounded

up if the first digit to be dropped is 5 or greater than 5.

Work Exercise IV, D in your workbook at this time,

-803-

V. E Ew.d Conversion, Output

.E. 1 F_dr cutput, a number converted by the Ew. d specification will have
the form w
bbX.X...XE+ee 0<ee<99

or
w

bbX.X. .Iy.X_#eee . . 100 < eee < 322
d

where b indicates blank character(s), X the most significant digits of
the integer and fractional parts, and + eee or +ee the power of ten by
which the number is to be multiplied, The second blank will be replaced
by - for negative values.

By the specification E12.5 output of the value +500. 500 would appear on the
printed page %S

w the field width (in this ex. w =12)
the space reserved for the sign of the number
b the most significant digit of the number

c the decimal pbint

—-60g~

d the number of decimal places in the specification designates d digits
second in significance only to b.

e the exponent, whose field width is always 4

The minimum value wis d + 7. Therefore,
w>d+ 7

A. For the E-type number -4.395E+02 how long is the d-field?
' ' Answer: A. 3

B. By what numbei‘ should -4. 395 be multiplied to represent the
actual quantity ?

IV.E.2 If d is zero or biank, the decimal points and all digits right of it are
suppressed. For example, if A contains + 439.5, an E7.0
conversion specification would cause

bb4E+02

where each b is a single blank, to be printed or punched. The
plus sign is suppressed.

If X eontains +500. 500, what will the output look like for each of
the following conversion specifications ?

A. El12.5 Answer: A. b5.00500E+02

B. El4.5 B. bbb5.00500E+02

C. E10.0 C. bbbbb5E+02
IV.E.3 The full field width, w, must be large enough to accommodate the output

quantity, including the sign, significant digits, decimal point, sign of the
exponent and exponent. Remember the rule is to figure w > d + 7.

2
B. 10

or 100

-01¢-

IV.E.3
{Cont.)

IV.E.4

IVoE.5

IV.E.6

IV.E.7

What is the minimum value for w which would allow three significant
figures of the quantity -57900.4 to be output by Ew.d format?
Give the "E" representation of the number.

What is the minimum value for w which would allow six significant
figures of the quantity 98765.4321 to be output by Ew.d format?
Give the "E' representation of the number.

If you said eleven in answer to the last question, remember that space
for the sign must always be provided even though the plus gign is
suppressed when positive quantities are output.

Suppose the w field is not large enough to accommodate the output
value. When the computer encounters this situation during execution
of a program, the output statement will print as many of the least
significant digits as possible and precede these by an asterisk (¥).
Example:

QBAR = 4790.2358
PRINT 10, QBAR
10 FORMAT (1X, E10.5)

.Output would be b*79024E+03.

Up to 14 significant digits may be output by Ew.d type specifications.

Work exercise IV, E in your workbook at this time.

Answer: 9
-5, 79E+04

Answer: 12
b9.87654E+04

118~

IvV.F.1

IV.F.2

Ew.d Conversion, Input

The total number of characters to be input is specified

by w. The field may contain up to 15 significant digits, blanks are
considered to be zeros. The input w-field may consist of one or more
subfields, namely integer, fraction and exponent. A sign for the
quantity is not required, but if absent it will be assumed to be positive.
Examples of valid subfield combinations for Ew.d input are

A. -47.926E-10 Integer, fraction, exponent

B. -47.92 Integer, fraction

C. 326+3 Integer, exponent

D. +12345 Integer only

E. .12345 Fraction only

F. E+H Exponent only (interpreted as zero)

All three subfields are required to be present in all Ew.d type input

conversion speeifications. True or false? Answer:

Note that the integer subfield may start with a sign, + or -, or a digit; the
fraction subfield begins with a decimal point; the exponent subfield may
begin with £, + or - . If the exponent subfield should begin with E,

the + sign is optional between the letter and the string of digits following
the letter. The value of the exponent subfield must be less than 322.

Which subfields are present in the following Ew. d type numbers ?

A. -6228.4E5 Answer:
B. 25E-~15
C. 3.1415926

False

: A, Integer, fraction,

exponent

B. Integer, exponent
C. Integer, fraction

~¢1%-

IV, F.3

Iv.F.4

The number of digits in the field fcllowing the decimal point

is specified by d. If d does not appear in the Ew.d specifica-
tion, as in E9, it is assumed to be zero. Input values for Ew.d
conversion may be written with or without a decimal point.

If a decimal point does not appear in the input field, d in the format
specification is used, and the guantity will be multiplied by

10_d to position the decimal point. Thus a number is interpreted in
this manner:

(exponent subfield) " -d

(integer subfield) x 10 10

Consider the examples

A, 32643
B. +12345

where no decimal points are present., Example A, if converted by an
E5. 2 specification, would be (326x10° x10‘2) or 3260.0. Example B
0 ~2 »
would be (12345 x10 x 10) or 123,45 for a specification of E6.2.
A decimal point in the input field of w characters always takes precedence

over d. If the input field contained 3260. or 326.+1 instead of 326+3 (Example
A above), the result would still be 3260.0. (d =2) in the E5.2 format is ignored.

With an E7, 1 specification, what will be the values of the following input
quantities ? ‘

“A. 987.000 : . Answer: A. 987.000 99
B. 1.4E+22 B. 1.4% 10 _ 3
C. -20E+03 ' C. (-20)x 10 x10 = -2000.0
D. .726+14 D. . 726X101.&
E. 726+14 13
F. DbbbbE-6 E. 726.%10
F. Q.0

~81¢~

IV.F.5

S

It is important that the w in an Ew.d input specification should be
exactly the same length as the field containing the input number. If
it is not, incorrect quantities will be input. Consider the following
example:

It is desired to input three quantities -~
3.14159, -500.00 and 1726.42

They are punched in the first twenty-six columns of a card thus

ik

(]

STATEMENT
RUMBER

Tron

FORTRAN STATEMENT

IDENTIFICATION

oeooa

llZJlS

thy 1
{

@ G| TOATIIATION |

2222202

2222222 2222 22 222222%222722222922112

Input conversion specifications of E10.5, E6.1, E9.5
would interpret the three quantities

f0000 006000000000 0000000000080 000000G000000000000000000000000Q00000000008C

TU8BURZBBISEITBODN2ANBBDBHNIN RIS BI40414241 44454547 45495051 525354 55 58 TT S0 59 60 61 B2 BIG4 65 B6 TR NVI RN UTBH T B RN A

(R RN R R R R R AR R R R R AR R R AR R R R R R R R R R R R R R R R AR AR R R R R R RN AR BRRERER

.
L‘%o:agm
sTATEMENT
RUMOER

é

b 9

FORTRAN STATEMENT

IDENTIFICATION

ONEY
tht 1
i

234 sle

722212

00000:000000000000 /00000000000000000000000000000C00000000000000000
\RRRR SRR R R R R R R R R AR R R R R A R R R R R R R R R AR R R R R AR R R RN R R AR RN R R RRRR R RN

2222222 2222 22 221212

as . 0000314159, 0.0, and .72642 .

00000088

788 10"’1'21314151617\BﬂmﬂHZ324516272829303|3330353637383940‘1424344‘548"48(85051525351556515659508!82“8‘65566788%707172737‘757577737!&‘

11111111

222222122

“¥1c~

. F.5
{Cont.)

IV.F.6

On input, some value read by an Ew.d specification will always
be stored in the computer, and it is very important that the
programmer insures that it is the correct value.

With an E7.3 specification, what value would be stored for each of
the following input numbers:

bb246.3
bb246E3
246. 3bb
. b246.E3

gaw»

Work Exercise IV.F in your workbook at this time.

Answer:

A,
B.
C.
D.

246.3
246.0
246,300
246000.0

=-G1%-

.G, 2

V.G, 3

Fw,d Output

Now that you are familiar with the most complicated type of con-
version, let us consider others. F-type output is similar fo
E-type: w sets the total field width and d specifies the number
of digits to appear right of the decimal point. The difference
between E- and F-type conversions is that in F-type the exponent
subfield is not output, and is assumed to be zero.

Restrictions pertaining to E-type conversion also apply to F-type:

I d is zero or blank, the decimal point and numbers
right of it are suppressed.

If the field is too short to contain the output value, an *
followed by as many of the least significant digits as the
format can take care of will be output.

The output of values 267.26 and -13.54 by an F5,2
specification would be *7, 26 and *3.54.

The sign is output only when the number is negative, but a
space must be allowed even thourh the sign of the number
is positive.

-91¢-

IV.G.6

IV.H.2

If the field is longer than the quantity to be output, the
number will be right-adjusted in the field and extra spaces
filled with blanks. ‘

What would the output look like if each of the following quantities
were output by its accompanying Fw. d specification ?

A. 3.1415926, F5.2
500000.0, F7.0
2468.1357, F7.1
-999,111, F8.3
. 12345.6789, ¥10.6

MUOw

At this time work Exérciseés IV.G. in your workbook.
Fw.d Input

F\vb‘.'d input specifications are similar to Ew.d input specifications.
Again the difference is that the exponent subfield is omitted, and is
assumed to be zero. All Ew.d restric¢tions apply to Fw.d.

At this time you should work exercises IV.H in your workbook.

Answer:

A

B.
C.
D.
E.

b3.14
500000
b2468.1
-999.111
*45,678900

LTS~

V.1 Iw, Input and Output

Iv.L.1 I-type conversion is used to input or output integer quantities.

Which of the following variables should use I-type conversion
if no type declaration has appeared in the program?

PI
HOURS
MINUTE
ALPHA
INDEX

°

4

RAD
KOUNT Answer: C, E, F, H

°

momMmYowE>

V.12 In Iw specifications, w determines the width of the I/0 field. On
input if blanks appear within the field, they will be interpreted as
Zeros.

What value would be stored for 5bb65, read by an I5 specification? Answer: 50065

~81¢-

IV.L3

+ 39

C._ roRr

1

1100

If a sign is included on an input quantity to be read by an I format,
it must precede the first digit.

The first twenty columns of an input card contain
42 157 346

ISTATEMENT
1 HUMBER

FORTRAN STATEMENT

IDENTIFICATION

(80000

la3es

1:1111
202212

ﬁuuuuoonoonuunuuouounuonnuonuuouonunnuononnnnonnounnoonnnnonooouon

78 910NIZRMIBIIGY wtszrmzzzzzuszsﬂzazsaunzz:nu:smsnaasw«nuuu«nammsxszmussunssumnsznuesssnammnn

111111 11114 'EERRREREERER R AR AR R R AR R A R AR R R R AR AR A R R RARRRRRRRRAN/

=t o EDIEN ...y

00000000

NBUTBRIBREG

f1t111ed
22222222

222‘222

Iv.1.4

Iv.L.5

Iv.L1.6

What values will be stored if the card is read by 15, 16, I4, I5 specifications?

On output if w is larger than necessary to accommodate the value to be

transmitted, the number will appear right adjusted in the field, and
preceded with blanks.

The quantity 987654 is to be output by an I8 format. How will it look?

If the w field specified for output is too short to accommodate the value,
the (w-1) least significant digits of the number will be output with an * in
the left most position of the field. Space must be allowed for the sign of

’the number.

The quantity 987654 is to be output by an I4 specification. How will it look?

Work Exercises IV.I.

Answer: 39, -4200, 157, 3160

Answer: bb987654

Answer: *654

=61¢-

v.J.1

Editing Specifications

Many times computer programs make provision for punching out
cards containing several items of data to be used as input for another
program. Should the second program not need all the data items on

_a card, or not need each sequential card, it would be extremely tire-

some to repunch or reassemble the input data deck. For this reason,

. and for spacing output data, editing specifications are available which
" permit skipping columns, advancing to the beginning of a card or printed

line, and inserting commentary, titles, labels, etc.

-0%¢-

IV.J.2

foR
C “TowntwT

108

STATEMENT
MUMBER

wX specification indicates that the next w columns of card or print
positions of printed line are to be skipped over. For example, if
two integers, 5 and 10, are to be printed, specifications I5, I5 might
be used and the output would be

bbbb5bbb1 0

15 I5

The same output format could be achieved with specifications
44X, 11, 3%, 12:

bbbb5bbbl10
B Saian A
4X 11 3X 12

If the input list is A, B, C, what values would be read in from
this card for A, B, and C:

393, 141760 2.3

FORTRAN STATEMENT

LOENTIFICATION

vlagon

132345

thi1y
]

A2222

000000000 000000000000 00000000000G000000D00000000000006000000000600

788 10“12!3\4!5151718V!EZ‘ZZBH?SZSZ‘IZBZBBOJI32333‘35%373835@41425144‘5!647684950515253545556515!5@6!&63“656567585&707172

[R R R R R R R R R AR AR R R R R R R R R R R R R AR R R ERERE R

1111

2

00000008

7374157677 78 73 60

11111111

22222222222 222222222222222222222222222222222222372%22722%222222222%2122222272.2
for format specifications F5.1, 3X, F4.2, 4X, F4.1? A= Answer:
B =
C =

A
B
C

i

[N RNV

v, .3 In &« FORMAT statement, it is entirely optionait whether tie
customary ¢oinma ioilows a WX specification or not. For example,
the specifications

o PORMAT {2, 6X, Bil.

o

} n represents the FORMAT

temeni uumber;
and statermeni uumber
L FORMATY {12, 6XEL1U.2)

' . are equivalent.

Iv.d.4 Work Exercises 1V.d in the workbook.
IV.K New Kecord
, VoK. A Virecord' in FORTRAN input/output operations consists of one
¢ i - v . . - .
e punched card, one printed line, or one magnetic tape record. When

‘ it is desired to begin « new record in the course of data transmission,

4 siash {) in the list of formal specifications will terminate operativng
on the current record, and subsequent pperations will be on & new recory.
For sxample, o read in three quantities by input specificaticns

Eic.z F10.6/15 it would be necessary to have one card with two reas
guantities Tollowed Ly one card with one integer guantity. To print oul

the three quantities by output specifications 10X, Ei5.5, 10X, E15. 572041k
would mean printing fwo lines, the first one containing the two real
quantities and the second the integer quantity.

How many cards would be requirec‘? Lo read six items by specifications

b FORMAT (A10/15, E15.5, I5, E15.5/10X F10.2) Answer:

(o

445

The slash in a list of format specifications has slightly different
effects for input and output. In input transmission, the slash causes
reading of current card to cease, and reading on a new card to begin.
Consider the specifications

A. n FORMAT (14/15)
B. n FORMAT (14, I5/)

In order to read in two integer quantities by either of these sets of
specifications, two cards are required. In case A , one value would

be read from the first card, the slash causes reading of the first card to
stop, and the second value would be read from the second card, In case
B, two values would be read from the first card, the slash causes reading
of that card to stop, and reading of a second card to begin, even though
no more guantities are to be read. Therefore, set B will cause one card
to be skipped after reading the two daia items.

To input five items, how many cards would be required for specifications
A. n FORMAT (I5/110/F10.5/E15.6/E15.6) Answer:
B. n FORMAT (I5, 110/F10.5, E15.6, E15,6)
C. n FORMAT (I5, 110/F10.5, E15.6, E15,6/)
D. n FORMAT (15, 110//F10.5, E15.6, E15.6)

o oW
w W D o

—~£8¢%~

Iv.K.4

In output specifications the slash indicates 'terminate and begin."
Consider again the specifications

A. n FORMAT (I4/15)
B. n FORMAT (i4, I5/)

In order to print two integer quantities by set A, two lines are required.
The first line will contain the first quantity; the slash terminates print-
ing of the first line; the I5 specification causes printing of the second
quantity on the next line. In case B two lines will be printed: the two
quantities will be printed on one line; the slash terminates printing on
that line, and causes a line of blanks to be printed on the second line.

How many lines are required to print five quantities by specifications

A. n FORMAT (4X, I5, [10/4X, E15.5, F10.5, E15.5) Answer:
B. n FORMAT (I5, I10, E15.5, F10.5, E15.5) -

C. n FORMAT (I5, 4X, I10, E15.5, F10.5, E15.5/)

D. n FORMAT (/I5, I10/E15.5, F10.5, E15.5/)

In part D., the first slash terminates printing of a blank line, the
second slash terminates printing of a line with two integer quantities,
the third slash terminates printing of a line with three real quantities
and prints a blank line--a total of four lines.

g aw >

N TN

%8¢~

IV.K. 7

When consecutive slashes appear in a list of format specifications,
they need not be separated by a comma. The effect of consecutive
slashes is to skip one or more cards or lines. During input, N
consecutive slashes embedded within format specifications will
cause N-1 eards to be skipped; N consecutive slashes preceding or
terminating specifications will cause N cards to be skipped.

If two quantities are to be input by the following format specifications,
how many cards will be skipped in each case?

A. n FORMAT (14///14)
B. n FORMAT (///14, 14) ;
C. n FORMAT (4, 14///)y o

During output, N consecutive slashes preceding or terminating format
specifications will cause N lines to be skipped; N consecutive slashes
embedded within format specifications will cause N-1 lines to be skipped.

If two quantities are to be printed by the following épecifications, how
many lines will be skipped in each case?

A. n FORMAT (14///14)
B. n FORMAT (///14)
C. n FORMAT (14///)

Go to your workbook and do Exercises IV.K.

Answer:

Answer:

e

o>

A.
B.

[GURNZL I U]

W o N

—G¢%-

V. L

v.L.

Iv.L.2

wH, Output and Input

The wH output specification is used to insert w Hollerith characters
(6-bit alphanumeric characters) into the output record. The w
characters to be inserted follow immediately after the H in the
format specification. For example, if the specifications

n FORMAT (10X19HTHISbISbANBEXAMPLE.)
are used to output one line, the line would be

bbbbbbbbbbTHISbISbANbEXAMP]’iI‘E’ . bbb - - -

10X 19H
In the wH output specification, w must be equal to or less than 132

since there are only 132 print positions on mest printers. A comma follow-
ing the w characters is optional.

What would the printed line look like if it were output according to Answer:
n FORMAT (4X,10HbVELOCITYb, 3X,4HTIME)

wH, input specification causes w Hollerith characters to be read into
the specified FORMAT statement. For example, if a card were
read by

n FORMAT (15Hbbbbbbbbbbbbbbb)

the first 15 columns of the card would be read into the 15 blank
spaces following the H of the specification. This same FORMAT
statement, containing its new Hollerith characters in place of blanks,
could then be used to output a title, label, or commentary.

If a card were read by specifications n FORMAT (17Hbbbbbbbbbbbbbbbbb),
and the card contained NOVEMBERDb24,b1968 in the first seventeen
columns, could the same format later be used to print a date on output? Answer:

bbbbbVELOCITYbbbbTIMEbbb ~ -

Yes

=033~

w.L.3

An option to wH output is simply to enclose the desired Hollerith
type data with (¥-—---—- *). If we apply the (¥---—-- *} option to the
first example in IV, L.1 the FORMAT statement would be

n FORMAT (10X*THISbISbANDEXAMPLE. *)

Repeated Specifications

Any conversion specification mentioned so far may be repeated in

s FORMAT statement by a convenient nofation: immediately precede
the specification with the integer constant which is the number of times
the specification should appear in the FORMAT statement. For
example, to read in four integers from one card, the specification

might be
n FORMAT (4I5)
which is equivalent to
' n FORMAT (I5, I5, I5, I5)

What is the equivalent form of
n FORMAT (E10.3, E10.3)

Answer: n FORMAT (2E10.

3)

-L35-

IV.N.2

Input/Output Statements

Now that you know how to specify which data items are to be input

or output from 2z list, and in what form they are to be transmitted by

means of FORMAT conversion specifications, there remains one

further process to be mastered: namely, writing the input/output statements.
As you know, the input operation is reading -- punched cards or magnetic
tape; the output operations are writing -- magnetic tape, printing -~ on paper,
and punching ~- cards. Each operation makes reference to a piece of
equipment -~ a card reader or punch, a magnetic tape unit or the printer.

So input/output statements must include two pieces of information in

addition to list and format reference number. These two pieces of
information are the kind of operation desired, and the piece of equipment

to be used. A typical I/O statement has the form

OP n, L
OP (i, n L

or

where OP specifies the desired operation, i is an integer constant or variable
designating the I/O equipment, n is a FORMAT statement number, and L
represents the list,

How many elements make up the second form of a typical input/output
statement as shown above ?

These elements are , I/O unit number, , and list. Answer:

The read-card operation is stated
READ n, L

This statement will cause one or more cards to be read from
the card reader according to format, n, and list, L.

Which of the four I/Q statement elements is missing from the

Answer:

4
operation

FORMAT number

preceding READ statement ? Answer: I/0 unit number

-8%e-

IV.N,3 To read cards it is unnecessary to specify a unit number, since
: only one unit -~ the card reader -- can read the cards. As an
example, :

READ 100, A, B, C
100 FORMAT (E15.6)

will cause three cards to be read by E15.6 format. The value from
the first card will be stored in A, the value from the second card will
be stored in B, and the value from the third card will be stored in C.
How many cards will be read by
READ 99. X, Y, Z
99 FORMAT (3E15.6) Answer: 1

IV, N. 4 By way of review, remember that reading (or iizriting) will continue
as long as the list specifies. If the format statement "runs out"
before the list, it will repeat according to the riles mentioned under
repeated specifications. ' '

Write the statement to read from punched cards according to
10 FORMAT (2014)

all the elements of array KTABLE, which is a one-dimensional array,
dimensioned 25. Answer: READ 10, KTABLE or

READ 10, (KTABLE(I), I=1, 25)

=645~

IV.N,6

If formatted data is to be read from a magnetic tape unit,
the READ statement must specify which unit. Therefore, the

READ statement will be
READ (i, n) L

Notice that when the unit number and format number are enclosed
in parentheses, they are separated from each other by a comma;
but the right parenthesis is not separated from the list by a comma.

Write the statement to read three real values for X(5), Y(10) and
ALPHA, in that order, from magnetic tape unit 4, according to

500 FORMAT (3X2E20.10, 5XF5.1) -

An equivalent way of writing

READ (i,n) L
is to write

READ INPUT TAPE (i, n) L
What is the equivalent form of

READ INPUT TAPE (5, 50) MATRIX ?

Answer:
READ{4, 500) X(5), Y(10), ALPHA

Answer: READ (5,50) MATRIX

IV.N,7

IV.N.8

As you might have suspected, the output statéments to print, punch
or write formatted data onto magnetic tape are

PRINT n, L
PUNCH n, L
WRITE (i, m) L equivalent forms
WRITE OUTPUT TAPE (i, n) L

Write a statement and accompanying format to print four positive
integer quantities, each with a maximum value of 999 on one line,
separated from each other by at least five spaces. The quantities - Answer:
are named I, J, K, and L. PRINT 100, I, J, K, L
100 FORMAT (5X14, 5X14, 5Xi4, 5X14)
or 100 FORMAT (419)

In the preceding answer, of course, you could have used any number
for the format statement, so long as it was the same number used in
the PRINT statement.

~18¢-

IV.N.9

You may have wondered why the printed line was begun with five
spaces instead of with the integer I. Actually, it was unnecessary

to leave five spaces at the beginning of the line. However, the very
first space of the line has a special function in controlling the spacing
of lines on the output paper. The first character on the output line

is never actually printed, and acts as a carriage control, with these
results:

- For first character 0, result: double-space before printing

1, A -go-to new page before printing

+, spacing is suppressed after printing

‘(next print record continues on same line)

any other character
or blank, single-space before printing

To print ten elements each from two one-dimensional arrays,
KOUNT and ANGLE, with one element from KOUNT and the
corresponding element from ANGLE on the same line, separated

by three blanks, and double-spacing between lines, the coding

might be

PRINT 976, (KOUNT (I), ANGLE (I), I=1,10)
976 FORMAT (1HOI25, 3X, E20.10)

_ If KOUNT and ANGLE are dimensioned 10 each, an
- . equivalent way of writing the above print statment is

PRINT 976, KOUNT, ANGLE Answer:

© True or false?

False

-¢€4-

IV,N.10

Remember,' when a dimensioned array is used in an I/O list
without a subscript, the entire array is transmitted before
the next item of the list is transmitted. Therefore, the
result of

PRINT 976, KOUNT, ANGLE
976 FORMAT (1HO 125, 3X, E20.10)

would be

line 1 KOUNT (1) KOUNT (2)
line 2 KOUNT (3) KOUNT (4)
line 3 KOUNT (5) KOUNT (6)
line 4 KOUNT (7) KOUNT (8)
line 5 KOUNT (9) KOUNT (10)
line 6 ANGLE (1) ANGLE (2)
line 7 ANGLE (3) ANGLE (4)
line 8 ANGLE (5) ANGLE (6)
line 9 ANGLE (7) ANGLE (8)
line 10 ANGLE (9) ANGLE (10)

This is bad enough, but there is worse trouble: every item from
KOUNT which appears in the right-hand column would be converted
as though it were a real number, which it isn't, and every item
from ANGLE in the left-hand column would be converted as though it
were an integer. Recalling the computer forms of real and integer
numbers, with and without characteristics, you might imagine the
"real" KOUNT items would all be printed as zero, and the "integer"
ANGLE items would all be very large integers indeed !

-€8g-

IV.N.11

g
NG ettt

STATEMENT
HUMBER

As a final example, let us look at a little coding to do the

following: read from a punched card a date, then from twenty-

four more cards each an hour and a temperature. The first

card looks like
12 68

¥

FORTRAN STATEMENT

1DENTIFICATION

gleogo

2345

it
{

=i o CDICOATIRGATION

Tﬁﬂﬂl‘lﬂDO000_0[100000000000000000000000000000&0000000[10000000000000006

T AWNEBUBIET BN 2N ERNABI LB UT BN EILU QLU S LTLENIVNHNBBIRNIDIROUBBILRNNT

RN ERE R R R R R R R R R R R R R R R A RN R S S R R R R R R R R R R R R R AR R AR R R RN R

The remaining cards are similar to this one
22.5 DEGREES C “

§0000000] .
I73 74 75 7877 78 7oifel
(RERRRERKY B

Sty
o ﬁ

FORTRAN STATEMENT

m:unnugﬁm i

= o CI[CORTIBUATION

0000000000000 00000000000000600000000000000000060000000080000000000
RERRARERE R R R R AR AR R AR R R AR R R R R R R AR R R R R R R R R R R RN R AR R RRRRRRRRRR'

(The rightmost digit of the hour will always be in column five, the
temperature will always have the decimal punched in column 11,
and one fractional digit.) Then, starting on a new page of output,
let us print the date as a page heading, followed by the hours and
corresponding temperatures in chronological order.

DIMENSION TEMPS(24), IDATE (3)
READ 100, IDATE

100 FORMAT (315)
DO1lI=1, 24

1 READ 101, K, TEMPS(K)

101 FORMAT (I5, F7.1)

PRINT 102, IDATE

102 FORMAT (1H1 12, 1H/I2, 1H/I2)
PRINT 103

103 FORMAT (/1X 4H HOUR 2X 22HTEMPERATURE IN DEGREES)
PRINT 104, (I, TEMPS(I), 1 =1, 24)

104 FORMAT (1HO, 1X, I2, 7X, F7.1)

Te9swn 12131415181718lsﬁleZZBZlZSZSZ?ZGBSOﬂ323334353637333340414243“4545474345505!52535455851505960618253546388576859701172737475187770WN

coo0008Y
IRRRRRRE

@)
(2
(3)
(4)
(5)
(6)
(7
®
9
(10)
(11)
12)

—~¥E¢-

IV.N.12

Several things to note in the above twelve lines of coding are:

@)

(2)

3

(5)

(8)

&)

10

(8)-(10)

IDATE must be dimensioned at least 3, since it will
require 3 computer words to contain enough display
code (or alphanumeric) characters to write the date

in full.

Since IDATE is not subscripted in the read statement,
the entire array -- 3 words in the case -- will be

read in.

Although FORMAT statements may appear any place in
a program, it is convenient for debugging and referencing
purposes-to keep them near the I/0 statement using them.

An item may be input in one statement and then used in
the same statement for reading other items,

In the format, 1H1 advances the paper to a new page before
printing the date. N

Note there is no list with this statement -- this implies that
the format will consist of editing and/or labelling specifications
only.

The initial slash skips a line before printing, 1X insures that

the carriage control will indicate single spacing; an alternate way
of achieving this spacing would be to replace "/1X" with "1Hb",
Formats 102 and 103 could have been combined:

102 FORMAT (1H1 12, 1H/12; 1H/12/// 1X4HHour 22HTEMPERATURE IN DEGREES)

~Ggg-

IV.N.12
{(Cont.)

In this case lines (9) and (10) would be unnecessary. Since an output

line can have up to 132 print columns, the above output could have been
centered on the output page by following the output format carriage control
characters with 50X,

{10) An alternate way by which this format statement could have been
written is as follows:

103 FORMAT (/* HOUR TEMPERATURE IN DEGREES¥)

Note that it is not necessary to count characters when using this
" method, '

-98¢-

Iv.0 DATA Statements
Variables may be assigned constant values at load time by use of

the DATA statement.

One form of the data statement is
eyag/ydy, e d/ar, e 8y, .

DATA dy, . . ., dp/ay,
are identifiers representing simple variables, array names,
or variables with integer constant subscripts or integer
variable subscripts (implied DO-loop notation).

Iv.0.1

where di

are signed or unsigned constants; i.e., integers, real
numbers, complex numbers, Hollerith information.

3
The variable appearing in the d; field must not be blank common or
COMMON will be discussed in Part V.

numbered common variables,

~LEG-

IV, 0.2

Iv.0.3

The simplest example of 2 DATA statement is the statement
DATA PI1/3.14159265/

This is equivalent to the arithmetic statement
PI = 3,14159265

except that in the DATA statement the value is assigned to the variable
at the time the program is compiled. The latter case is a simple form
of an arithmetic statement which is performed during execution of the
program.

Little benefit is obtained by using a DATA statement in the above
example. The most advantage occurs when assigning values to arrays.
When a DATA statement refers to an array, the array must be properly
dimensioned and the DIMENSION statement must appear prior to the
DATA statement,

An array must be dimensioned prior to assigning it values by use of a
DATA statement. True or false?

The type of the constant stored is determined by the structure of the
constant rather than by the variable type in the statement. In DATA
A/2/, an integer 2 replaces A, not a real 2 as might be expected from
the form of the name A, e

LY n
Constants in data statements are not converted to match the type of the
variable to which they are assigned. True or false?

[IIREG b

Answer: True

Answer: True

—-86¢~

Iv.0.4

Iv.0.5

Iv.0.6

A single-subscript, implied DO loop may be used for storing
constant values in arrays.

Example:
DIMENSION TABLE(5) S
DATA (TABLE(), I=1,5)/7., 6., 5., 4., 8./
will assign 7.0 to TABLE(1), 6.0 to TABLE(2) ete.
The value is assigned to TABLE(5). - Answer: 3.0

When the number of list elements exceeds the range of the implied
DO, the excess list elements are not stored, and a diagnostic is
issued.

In the use of the statements

DIMENSION TABLE(3)
DATA (TABLE (1), I=1, 3)/7., 6., 5., 4., 3./

the values and are discarded. Answer: 4.0, 3.0

An alternate form for storing constants info an array eliminates the
implied DO.

For example:

DIMENSION B(5)
DATA B/4., 3.2, 0000077, 0, 5.9/

will assign 4.0 to B(1), 3.2 to B(2), etc. This is similar to input or
output of values into or from dimensioned arrays by entering the
name of the array without subscripts in the I/0 list.

~6€4¢-

Iv.0.7

Iv.0.8

Another form of the DATA statement is
DATA G, ..., dy/3, k¥a,, . . .,a,/
where k is an integer constant repetition factor that causes the
constant following the asterisk to be repeated k times.
For example, the statement
DATA FAT, CAT,SAT,RAT/4.0,2%5.2,2.1/
is equivalent to the statement

DATA FAT, CAT,SAT,RAT/4.0,5.2,5.2,2.1/

The statement

DIMENSION AMAT(10)
DATA AMAT/10%3,2/

will assign the value to each of the ten elements of the array.

Variable Hollerith or alphanumeric information is frequently needed
in a program. This may be defined by a DATA statement with a
maximum of 10 characters to a word.

Example:

DIMENSION MESAGE (2)
DATA MESAGE/10HTHISbISbAN, SHbEXAMPLE/

Array MESAGE: THIS IS AN EXAMPLE

Answer: 3.2

~0¥%%-

Iv.0.9 An illustration of the use of variable Hollerith data may be realized
by considering that if the answer to an equation, IANS, is <0 we wish to
print NO; if the answer is >0, we wish to print YES; and if the answer

=0, we want to print MAYBE. The Aw I/O specification used to print the
message will be discussed in Part VI,

The following coding will illustrate this:

ORT \ YTNG
C for Commen FORTRAN CODING FORM

B i SN

1

T

i

q . - g
LState- . :
! R FCRTRAN STATEMENT i
mentNg. & : ;
i Y& — e »_-5941
i ED . |
Do ‘) !
it l_{_:_E_ME‘N;SlIIOIN lM.ElslAiGlEt (131)1 AR T VR Y Y 0 A T 0 WS AN L) O 0 T S Y SO0 W A N &
Lo .
__,1_,1__L_,1_M§_AP£’_‘£[;§L,(1ME181A! qEJ(lIL) "III—zlL’l3i) 1/151H1bxbqubi’;5rIﬂA 'IIAQYIB,EHL IR IR RN
i1 SrE i . !
] ‘1’; vsﬁ'b’ | lslbL/i ‘ YRS SRS U N SN NN ST ST S VN N SHUOT VAN VOO VAN SN AN SO SO A SO DU NN A B N S '
o i
Lyl lg'l N R U0 R S N0 T O U N T O Y OO OO O U0 T A O Y VO ST OO0 YO S NI UG YT OO0 W
i :
|\1|;"|;;lnxlxi1111?111111111111111111'2H*xlxxlxi\t
i H
PN TR N Tl TS 000 UL U T W N S S T U S SO YO O WO U YUY VAT S W 0 DO Y S AU TS S DU S S AN O U T O
| InF-(;I’AlNJSA)x]'!OI’|210:’[3102 e sy e v v e by e e b b g

: =1
1111105Kiwlzi:lllztl!lli(‘lexi'111‘111Li|111’|11~1‘f
S Glox_LTiq '110101 AN A ST NN S GRS AV SR A A A SN BRI B RTAT AT
L1 ‘2105 K1=L2‘ ST ST B L SN B SN AN A AT RN U TS R TN SN B S BT

]

!
L) GLOI xT’O: lllgLO! YRR T SO ST S N O S N T 00 WU A0 NS WO S S0 N MY MOV IO SO VORI AR O WO K
1 ‘ i
Lo 80 K=131!1;*'!xlx'Lill115111111[|1111xLl1;xsfllelj
11'1010 ERII|N‘TI xlxoxofox’; | 1ERS gAlG'EL(*Kn)x it v e Lo b b gy f’
1000 FORMAT (iX,A5) V1o v by by sl vy aa by i\
it .lliilll'!Illll!'ili!ll]!\lllll!ll]lllllI!lli_]“
[L i AN N S VO S N T O N T VAU (N U SN ST U S Y TN S W S S W JUOY G U S O S0 A R A !j
llxln'LJ_A'.111!111111[!1llllL‘ll]Llll'1!llllllllL!'f

-

~1¥é-

IV.0.9
(Cont.)

Iv.0.10

What would be stored in core for the following DATA statements ?

A. DIMENSION TABLE(3) ;
DATA (TABLE(I), I=1,3)/1.0,2.0,3.0,4.0,5.0/

B. DIMENSION TABLE(5)
DATA (TABLE(I), I=1,5)/5%4.0/

C. DATA MESAGE/11HTHISbIShbBAD/

«

If you missed the last problem, remember that only ten characters

may be stored in one computer word.

Answer: 1.0, 2.0, 3.0

Answer: 4.0, 4.0, 4.0, 4.0, 4.1

Answer: THISbISbBA

345

W.0.11

Another form of the DATA statement may be used. This form is

DATA (d; =listy) , (dp = lists), . .., (4, = listy)

where d,, d,, etc. may be a simple variable or a subscripted
variable with or without subscripts. The list is a set of constants
as before except that repetition is indicated by a set of parentheses
instead of an asterisk.

For example,

FORTRAN CODING FORM

[C for Comment
Sbabe_ 0";3’; " -+ 2
ment’\T ‘'z FORTRAN STATEMENT |
i 507 . . 50,
; ‘ ‘ ;
L DII:MEINSstOxN 1G111B1(11l0)4’|Yi(12-01) ”Z(l 124)1 TR W T WO 2000 08 N O MO W S ‘1
WJ_i_L_l_S_DATA' (G 13=ll| 2 lz“l L’!3l IOn’x -(41' x) 1)1 T AR RN N BN W N M A l\;
Lt 1 E DATA (X 3‘°|1)4L11591)l PSR S OS TR YRS SO0 N0 U S S SN0 AN NG VS DONS U S ! Lot |L:
[l_é DlAzTIA ((Y(I)1’1 1 11 %) 1)1 131 101 L] Ol’lll 121 :(Ol i)l’xll‘lot)l 1 "i{
[] DALT'AI ‘(,Zl(:‘ll ’ 141)] 11101' LO 1) PR S W0 U T S0 T MU U N0 VO VN0 N N S T 000 I T O S SO OO LJ
are all acceptable. Notice that as in the first form, an array name
without subscripts implies the entire array.
1v.0.12 Now you are ready to work the final Section IV exercises in your workbook.

73 2

R

Gty

R T 00 T S R O B

SN g D

L

<
N
i

b

U SO S B A

¢

RN T N U S ST I T |

i

~E¥é—

V.A

V.A.1

Statement Functions, Function and Subroutine Subprograms, COMMON

In previous sections you have learned to write fairly complicated
programs which included the input of certain data, the required
calculations, and the output of the results. In theory, these tools
previously presented will solve almost any numerical scientific
problem. In practice, however, the series expansion of a few
hundred trigonometric and exponential functions in some problem
would probably cause the programmer to decide on a different
career. To prevent such a mass exodus, FORTRAN provides

the programmer with methods for handling often-repeated functions,
namely, statement functions, function and subroutine subprograms,

Statement Function

There are two ways to write a function. The first method is used
when the function can be expressed with one FORTRAN statement.
This is called a statement function. A statement function is defined
in the program where it is to be used.

The form of a statement function is:
oo s =E
Name (pl, Dy pn)

P, are formal parameters (pr arguments) and must be simple variables.

There must be at least one and not more than 60 parameters.

E is an expression, arithmetic or logical, which is a function of the
arguments ;s pz, ceees P

-¥¥e-

V. A, 3
(Cont.)

C for Comment

A statement function must always be defined in the program in which it
is used. True or false?

Statement functions are named according to the rules which apply in
the naming of variables.

The statement function below may appear in a program,

FORTRAN CODING FORM

’,,_,

FORTRAN STATEMENT \

=
{nen’ckljgig 50/
(et i P oLy 1Xi)f_'121°:*sxt*t*lzf*‘flr101*;}{{1"6;“ O b b by vy Il
The name of this statement function is
It has one formal parameter,
V.A.5 A statement function must preceed all executable statements in the

program. It must follow all DIMENSION, type, COMBMON, and
EQUIVALENCE staterents which pertain to variables used in the
function definition. COMMON and EQUIVALENCE will be discussed
later in the chapter,

Answer: True

73 8

Mo b o o

Answer: POLY

Answer: X

~G¥s-

What is wrong with the following sequence?

V.A.D
(Cont,)
C for Comment FORTRAN CODING FORM
o E FORTRAN STATEMENT |
pe _50 50, 73 2
. IAFUN (J,K)=L(3)*J-K] A
,qul,,ﬁ__ tll}LlllllIlIllLIlllJllilll;lIJIl’lllJlllllH‘ b
Lol l’; I?LI._MEJNLS:IpiNL1L|(11:OI)1 SR AU SU N N O AN A AN RU B SN N BN B AR AR S B I I NS A S
Answer: L(3) appears in state-
ment function before
it was dimensioned.
V.A.6 A statement function is referenced by placing the statement function

name in an arithmetic or logical expression. For example,
Y =POLYXL*Z +1.5

references the statement function POLY (defined in V. A.4). This
statement causes the expression, 2.0¥X**2+4,0%X+6,0, to be
evaluated using the value of X1 in place of X. The result

is then multiplied by the value of Z, added to 1.5 and

assigned to Y.

The result of POLY(X1) is since the type of a
function is covered by the same rules as the type of a

variable. Answer: real

~9%¢~

In the statement
Y=POLY@XL)*Z +1.5

the value X1 is called the actual parameter of the statement function POLY.
This means that X1 is the actual value which is used in the evaluation,

The parameters used in defining a statement function are called

parameters, Answer:

The parameters used when referencing 2 statement function are called

parameters. Answer:

When a statement function is referenced, it often looks exactly like a
subscripted variable. In order to distinguish between the two, it is
essential that all subscripted variables be dimensioned and that a
function name never be dimensioned.

What is the value of Y after statements 10, 20 and 30 have been executed ? s

FORTRAN CODING FORM

C for Comment

N

B =

formal

actual

]

Ly oo tay 11

| IR T T T I N O

- FORTRAN STATEMENT \

mentNo.9 ' Sol 73

VJ_,L“LL_,_P!OII‘\Y‘(Xa |=r21'\0|*iX1*1*r21+141‘p|*nX:+|6!°|01 RTINS DRI 0 A O T T B 14_J IR R B

,|_,1_1_1_;____|_1|!||||Inn-:-nilx!lltllll(x:ui:ll||i|||l|||1Jj ST N TN B M A

L1} x;lllnlnl:1°|':‘l||n|‘||:11|:!|!||1ll'l1|‘|:nxJ_\ SN VR AN SO BN TN W |
10 Z|=y1|°|51111!nr.xl|11|i|:|1||||1l1|1|!ll11!111JJJ AV T O O

111210[Rlzlzl'lol|-|||llll‘ill!‘lllI|ll!|‘|lilllIllllllll

,_J_L_x:}_l_O.LY’FlPlOII‘iYI(B)l:knzl+|1|° P N U U ST U N 0 SN VAT NN 0 B B T B B A

A

~ a2

WAL

V.A.9 A logical expression may also be defined by a function statement.
An example follows:

FORTRAN CODING FORM

C for Comment
@!]»

e ol FORTRAN STATEMENT \
et ey _ 5QJ\ 73 8
.;,J.,.L_L,l__,LiOiGlIfoAPI 1)%1Y1’!TIE151T|411 cr et b e by v brav e b ﬂ ,LJ_J_L (S T N I
Lokt g TJ_E?_JT](?(L’ IYl)lzl(1X1° fAlN-lDLng)l‘ ;OBI'l i(u" LijTi“ IXJ)Ll (ST AR R AT O l\] | TR T T B B s
The logical variables X, and Y are the parameters of the statement
function. : Answer: formal

A reference to the function will give a . TRUE. or . FALSE. result
depending on the values of the parameters. Answer: actual

V.A.10 A statement function name must not appear in a DIMENSION, EQUIVALENCE,
COMMON, or EXTERNAL statement. EXTERNAL will be discussed later in
the chapter.

If a statement function name were allowed to appear in a DIMENSION statement,
it would look exactly like a ~ variable, Answer: subscripted

V.A. 11 A statement function may reference library functions, FORTRAN
functions, other statement functions, function subprograms, but
not itself, Library functions, etc. will be discussed later in this
chapter. '

8%~

V. A, 11
{Cont.)

For example:

FORTRAN CCDING FORM

C for Comment
Etate— 4;-;

FORTRAN STATEMENT QJ
.

pentNe Sy 5

Jlll,,,CIOMPlLlEl)(ilZ[II!Illlll]llllllxi||l||lflllllllll!\‘
= * *

L bl Zl(1X1’ lYi)x ! uli'yol’lox'l)l 1P|X|P!(lxl)x 1010181(1Y1)I+1(|01' :05’ :11'10l)! L1y b
R | EIB‘§|T|(XI)I=!Ai*l*12?:!_BJIll]lllll!|ll]lAllll!Il'lllll\l
Lot XSth(IK)FXl*!*lzla;l;lml:rs;!illnllln|l||11111111\
Ll SIEIC!O[NIDI:FI(XDF!FIIBIS;TK(XA)VXES@&(K!)I [N NN O O R YO OO OO O O B !!

The library functions EXP and COS are used in defining the statement
function 7. The statement function SECONDF uses other
in its definition.
V.A.12 Work exercise V. A in your workbook at this time.

24

Answer:

statement functions

~6%¢-

Subprograms
A subprogram is a section of preprogrammed coding which is designed
to accomplish a very specific objective, such as to evaluate a sine, per-

V.B.1
form an interpolation, etc.

FORTRAN provides a group of commonly used subprograms, notably
trigonometric and exponential functions, but also allows the programmer

to develop his own special subprograms for his own special needs.

In this discussion, the program that references or 'calls' a subprogram
is referred to as the main program. It may be a subprogram which

V.B.2
references another subprogram.

occurs, the subprogram which references the other is referred to as the

program.

A subprogram is written as an entity which is completely separate from
the main program. Once a subprogram is written, it can be used with

vV.B.3
any program which has need of that specific computation.

In using a subprogram, the programmer must do the following:

V.B.4
1.) Indicate at what particular points in the program a subprogram
is to be used. This is done by a reference to the subprogram.

2.) Provide the necessary arguments to the subprogram.

One subprogram may reference another subprogram. When this situation
Answer: main

=083~

V.B.4
{Cont.)

3.) Make sure that the arguments are of the type required by the subprogram,

4.) Indicate to the main program the type(s) of the result(s).

See exercise V.B for an jllustration of the use of a subprogram and
work Exercises V.B in your workbook at this time.

~182-

Function Subprograms

Answer: 1, 60

!
i
73 0,

Py b ol

TR S T B B B

NI S T A R

v.C.1 The preceding section discussed subprograms in general. The two different
types of subprograms are function subprograms and subroutine subprograms. The
first of these to be discussed is the function subprogram.

V.C.2 Just like statement functions, the function subprogram must be given a name.
The word FUNCTION, the name of the subprogram and the formal parameters
form the first statement., The type must precede FUNCTION if the first
letter of the name does not properly indicate the type.

The function subprogram, like the statement function, must have at least
argument and not more than arguments.

v.C.3 The following function subprogram will sum the first N values from the
array A.

FORTRAN CODING FORM

C for Comment
tate- |+ FORTRAN STATEMENT \
pentNo,d 50)
BT

Eoe gt FJUil\{ngqurISJPM((APlNi)i!l:lJJ!unlll:JJLllnns[n Ld
Lol |_.__D1111VI|Ell\IIS|I;ONI LAg(Jlnoloro)l PN ERR IO SO RV IO WO TN D O U DO N U B N O W LL}\
it SpM=l01IlLiLlll!llll'llJ]‘LIIJlJI!Llllllll L'ﬂ
Ll DOL0L K=o N oo Lo e b g b a b r s by el LL\
i1 SIWSQUM#.IA‘(}{I)IlllLllllJ_.ll'JllJllliLIJl!x)’ [
Lllllo CnoyNTlI|N1U1E114|x|IJ¢11IJJ_| YN S N YOO T WO U T W N O T O T L
FURIRIN RETURN, ; ;1 g ooty vy v g e by v e b g b g vty
Lt Elqu_LJl;llJlIJ|I[ILllllLllll‘lllllillllJJ_!

4
1R I B N A
lLllx!,lLL_L_,;
| I YO TN T DO YOS T WO T
Vv poo s by voe s

;
!J1|-4‘|H1§

~69¢-

v.C.3
{Cont.)

In the example above, the name of the function is . Answer:

The type of the function is . This means that the resulting

value will be real. Answer:

In the example of section V.C.3, you probably noticed that the name

of the function is used as a variable within the function. This must
always be done in order to indicate the result to be returned to the
main program. Thus, the value of SUM at the time control is returned
to the main program is the resulting value of the function.

The variable SUM has the same name as the function subprogram.
The value which is returned to the main program is the value of

the which has the same name as the subprogram. Answer:

In the example of a subprogram, V.C., 3, attention is called to the
RETURN statement., A RETURN statement is an executable statement
which terminates the logical flow of the subprogram and returns the
logical program flow to the main program. A return from a function
subprogram would be to the statement where the subprogram was
referenced.

Example:

Main Program

10 FL = SUM(ALPHA, N)/FN

.
.

SUM

real

variable

~§4%-

V.C.5 SUM (ALPHA, N) references FUNCTION SUM (A, N). When

{Cont.) RETURN is encountered, the logical program flow is returned to
statement 10 of the main program. The result of SUM is divided
by FN and the quotient is stored in FL.

If the RETURN statement had followed statement 5 in section V.C. 3,
the resulting value of the function would always be . Answer: zero

V.C.6 A function subprogram is referenced in exactly the same manner as
a statement function. The following program references the function
subprogram which was written in V.C. 3.

FORTRAN CODING FORM

E;t-e_-'f_ﬂ for Comment

ﬁnentNQ’g,, FORTRAN STATEMENT 501 7o N
Lo | P IMENST ON ALT(L000) 1, vyl iyl v v bevualaan xJ Po b ba g
C a1 JBAD [THE, VALUES, TO BE, SUMMED, | ¢ 1 1003131 »l\ (T B AT
e READ 20, J (ALTL) TR T) oyt P
1 1210 quRleAiTl 1(xIl51/1(1lxolF:8:' »21)1)11 TIRNS N N WU VAU U Y O U VO T O 0 001 O xl} NN VO W 0 S G W 4
L TIO;PI::ISIUIM(IAiLITPlJI)llllJlllll[\lllllJilllllllJIllIvl TR I A S
Co i | WRIDE THH SUM |, b e by baan oy by ol | IS S I B NS A
Ly RINT 26,00 TOP! s o b e v be vy v Lo v e b bl ISR U O SRS
L1 26 FORMAT (A0, A AHITHE SUM OF THE {, Jdi, i1 1 sl boss b taa
Lo JH10H VALUES IS, lElllSI'l41)lllIlJL!JllJJlllllllllli! I SN |
Hl,h.N.Dlux.‘x,..Llll,.lll.1144”1,,1.l...,luull ' [I

In the above examplé, the first statement sets a maximum for the number
of values which can be assgigned to the array ALT. This maximum is
Answer: 1000

-$G8¢-

V.C.10

In the example of V.C.6, the read statement reads J values into the
array ALT. If more than 1000 values are read, no diagnostic message
occurs, but the resulting sum may be incorrect. One of the reasons

for this is that all values read after the 1000th value would be stored

in locations assigned to be used by other variables, constants or parts
of the program., Even if TOP were to give the correct value many other
errors could occur., This means that program restrictions must be well
known to the person using the program. The programmer, therefore,
should make 2 note of restrictions of this type as-he writes the program.

Overflowing data arrays at execution time may result in . answers
without any indication that the program is being used improperly.

Suppose the function CPLX (A, B) is to produce a complex result. The
first card would read

COMPLEX FUNCTION CPLX (A, B)

In this case, do not forget to declare CPLX complex in the main program.

The function subprogram is generally used when the subprogram is to
caleculate a single resulf. The trigonometric, exponential, and logarithmic
functions are examples of this type of subprogram. These are kept in a
FORTRAN library and are automatically added to programs which reference
them., See your reference manual for a complete list of available functions
and the appropriate arguments.

Work exercise V.C in your workbook at this time.

Answer: incorrect

-GGg-

V.D

Subroutine Subprograms

The Subroutine Subprogram is used when several values are to be
returned to the main program.

Since the subroutine name is not associated with a single variable, the
subroutine name is not associated with the type of any of the variables
involved. Any valid variable name is valid as a subroutine subprogram
name.

The subroutine name (is, is not) directly connected with the type of the
values being calculated ?

A subroutine, like a function, requires a name and can have up to 60
parameters. It differs from the function, however, in the fact that
subroutines can be written with no parameters.

A function must have at least parameter(s).
Subroutines may be written with a minimum of parameters.
The first card of a subroutine is written with the word SUBROUTINE

followed by the subroutine name and parameter list (if any). For
example,

Answer: is not

Answer: 1

Answer: 0

~96¢~

V.D. 4

(Cont.) FORTRAN CODING FORM
FCer Comment RAN CODIN
tate- |
mentNo\d FORTRAN STATEMENT
57 . . 50]
[N {UBROUTINE lEp{!Cl}mSl(JébvrB;)n sl v el e e bl ol
bt L TEMPEB s b v g bvr g by s v s by v s b b gl
4 i d Bl::Alll!tlllJilJLlllJlJllllllvlillll'llll!J 2l
v e PASTEMP b v s by s by sy b e g g bbbl gl
Lt ETURN b s b b saa st vgada ool av v btaaaal
L1l END 1 s ovg a0l g v s e bv s s s o b s e baavp e b g bl
will exchange the values A and B.
Parameters in the example above were used to pass information to the
subroutine. They were also used to pass information back to the
vV.D.5 A reference to a subroutine is always made in a separate statement,

For example,

FORTRAN CODING FORM

C for Comment
lgtate— 3

p
ent No ,Foi FORTRAN STATEMENT 1
&5l a0,
L b |=12|8I'|61||lnlullllllilJ_Jlin,LrlnlnxlranI.nlxl
it Y|=|3|OI'17J||lllnillnlJllnulL|4nlnnlaIxlinL-ian
Ll CALLI‘I AEXICHINQx(«}CulY:)Ix_IJ AT RN IN T AN AU S I A B AT BT Er |

«wrill otk ¥V = AN 7 and V =9 A

73 =1
NN RN
Pos v o bt a
PN S N B B A I

TR 0 N W N I |

Loy 1 el 131

RN NN N WO O U T WO |

Answer: main program

73 8¢

bl sl v

P v a1 4

l‘n‘!l'llnl

=-LG¢-

V.D.5
(Cont,)

A reference to a subroutine can not be made within an expression.
In fact, a subroutine reference must always be made in a separate

Answer:

The reference to a subroutine always starts with the word CALL
followed by the subroutine name and the parameter list (if any).
The CALL statement may have a statement number and may use
continuation cards if needed.

Review the definition of RETURN in V,C.5. Look at SUBROUTINE
EXCHNG, V.D.4. In the case of a subroutine, the logical flow of
the subprogram is terminated and control is refurned to the next
sequential statement of the main program.

Example:
Main Program

CALL EXCHNG({X, Y)
10 Z = C*EXP(X)

CALL EXCHNG(X, Y) references SUBROUTINE EXCHNG(A, B).
The logical flow of the program is sent to SUBROUTINE EXCHNG.
RETURN terminates the logical flow in the subprogram and returns
it to statement 10 in the main program.

statement

-8G¢-

v.D.8

Work exercise V.D in your workbook at this time.

-6G¢-

Available Functions

There are many functions which have been written by other pro-
grammers which are available for your use. These functions

are divided into two categories. One set is called in-line functions
and the other set is called library functions. All functions in these
two sets are referenced in exactly the same way, but there are some
differences which may be of interest.

The two categories of functions which are available for your use are

and . . Answer:

The in-line functions are not actually subprograms, but small sections
of computer instructions which the FORTRAN compiler inserts into
your program at the place where the function is referenced.

The computer code for a specific in-line function is placed in the
program every time a reference is made to that function.

Reference to an in-line function does not cause control to be passed
to a subprogram, but just adds computer instructions to the main
program. True or false? ’ Answer:

Library functions are actually subprograms which are available for

your use. A reference to any of these functions will cause the referenced
function to be taken from the library and placed in computer memory
whenever your program is being executed. ‘

Since the available functions are all referenced in the same manner,
it is usually not necessary to remember which functions belong to

what category. True or false? . Answer:

in-line functions
library functions

: True

True

-09¢-

V.E.3

To use the available functions, it is necessary that the type of
the actual parameters are correct. It is also important to
know the type of the result you will obtain. The other important
item is to be sure that you understand what the function does.

In using a function which someone else has written, you need to
know the definition of what the function does, the type(s) and
meaning(s) of the different parameters, and the of
the result.

We have discussed in-line and library function in general. We
will now discuss several of the most popular of these functions.

a.) There are two in-line functions which take the absolute
value of 2 number. They are ABS(X) and IABS{J). They will
return the value of the argument whenever the argument is
positive. They will return the negative of the argument when-
ever the argument is negative.

Form Actual Parameter Type Type of Result Definition
ABS(X) real real X1
IABS{J) - integer ‘ integer 1t

Write a statement which will add the absolute value of x to the
absolute value of v and assign the result to z.

Answer: type

Answer: Z = ABS(X)+ABS(Y)

‘7*‘-%‘::%

196~

V.E.4
(Cont.)

b.) There are ten in-line functions for picking a minimum or

maximum value from the parameter list.
have from two to sixty parameters in a particular reference.

For example, the statement
B=AMAX1A, P, X, Y)

These functions may

will assign B the maximum value represented by the set of values

A, P, X,andY.

The different functions for minimum and maximum are the variations
on parameter type and result type.

Form Actual Parameter Type Type of Result
AMAXl(Xl, Koy enes Xn) real real
AMINL(X), Xg, -+, X)) real real
AMAXO(I,, Iy, ..., 1) integer real

1’2 o
AMINO(I,, Iy, .- ,In) integer real
MAXl(Xl, Xos oo ,Xn) real integer
MIN1(Xy, X9, «.., Xn) real integer
MAXO(II, 12, e ,In) integer integer
MINO(1,, 12, ‘e ,In) integer integer
DMAZX1(Dy, D2, .o ,Dn) double precision double precision
DMIN1 (Dl, Dy, +ves Dn) double precision double precision

Definition
maximum value
minimum value
maximum value
minimum value
maximum value
minimum value
maximum value
minimum value
maximum value

minimum value

Write a statement which will assign the minimum value of the variables
I, J, and N to the real variable Y.

Answer:

Y=MING (I, J, N)

or

Y=AMINO (I, J, N)

-39%~

V.E.4
{Cont.)

c.) There are two in-line functions which will perform modulo
arithmetic. These functions require two parameters and the result
is the remainder obtained by dividing the first actual parameter by
the second actual parameter.

Form Actual Parameter Type Result Type Definition
AMOD(X{, Xy) real real X modulo X,
MOD(l; , 12) integer integer I1 modulo I,

Write a statement which will set J equal to the number of years since the
last leap year. Assume that the year is stored in variable IYEAR and the
year is between 1950 and 1990. Answer: J = MOD(IYEAR, 4)

d.) Four other in-line functions are useful when working with complex
arithmetic. These are used to combine real variables or constants to
form a complex variable or to form real variables from the different
parts of a complex variable.

Form Actual Parameter Type Type of Result Definition

AIMAG(C) complex real obtain the imaginary part of
a complex argument

CONJG(C) complex complex change sign of imaginary part
of complex argument (Conjugate of C)

CMPLX(X;, X2) real complex form complex number from pair
of real arguments (X; + iXo)

REAL(C) complex real obtain real part of complex
. arcument.

-€9¢-

V.E.4 Consider the following code:
(Cont.)
FORTRAN CODING FORM
' C for Comment !
St e FORTRAN STATEMENT ‘ g
pent 788z _50! 7S 39
| \
gl CJQMPILEEL l])l’JEl’ 1F14 Pl d onn e v L b B] er gy L1 li I R
.__l_L_Ll__:E_‘fJ(_lzlol'll}l 1 l 11) ppap b padin pag s pa] g Eay g Ly [oo a Bt 5 1_'__‘
| =(vLLl lll3)lleILJIILllLlllllllllLllLll a1y (S s § it
__1_1_1_I¥FXAIMAG(1|) grp g bopg b g oy g by g e i b g L v 1 by £ oied g IR .
R YREéLnﬁEl)lLllilllll!LllLln11:14114!|1lr 14" N JIJ_E
L Dl_plN{PlL?(L(?S,El)I PR S T Y T O O O U (WO N O O A O 0 Ll | RTINS O OO 1_42
The value of D after the above instructions is +1i Answer: 15.6, 2.5

e.) The library functions are mainly the trigonometric, exponential,

and square root computations,

angular arguments and results are in radians.

Form Actual Parameter Type Result Type
SIN(X) real real
COS(X) real real
TANEX) real real
TANH(X) real real

For the trigonometric functions, all

Definition

sine of X radians
cosine of X radians
tangent of X radians

Hyperbolic tangent of X radians

~¥9¢-

V.E.4
(Cont.)

Form Actual Parameter Type Result Type Definition

ALOG(X) real real natural logarithm of X

ALOGLOX) real real logarithm to base 10 of X

EXPX) real real e to the X power

SQRT{X) real real square root of X

ASINGD) real real arcsine of X. The result is in the
range [-7/2, 7/2]

ACOS(X) real real arccosine of X. The result is the
range [0, 7]

ATANIX) real real . arctangent of X. The result is the
range [-7/2, 1/2]

ATANZ(XI, Xo) ' real real arctangent of Xl/X2° The result is

in the range [0, 27]

Most of these same functions are also available for double precision
and complex computations. See your reference manual for a complete
list.

Work exercise V., E. in your workbook at this time.

~G9%-

V.F

COMMON

V.F.1 I am sure that some of you are curious as to how information is passed to
and from subroutines which have no parameters. This is accomplished
through the use of COMMON. Functions may also gain access to main
program variables through COMMON assignments.

V.F.2 Suppose the statement

FORTRAN CODING FORM
- C for Comment :
tate~ |
%nentNo = FORTRAN STATEMENT 50j
& s
SN leMlolNllAlllllLllJ'lllLl_Jlllill}llJlllnﬁnllllLl'

appears in the main program. This tells the main program that this is

a variable which will probably be used by one or more subprograms. It
is then assigned the first location in the computer memory which is re-
served for common variables.

Common variasbles are assigned computer memory locations in the order
the variables appear in the COMMON statements. The statement
COMMON A, B will assign A to the first location in COMMON and B to
the "~ location in COMMON,

COMMON A
COMMON B

will also assign A to the first location in COMMON and B to the second
location in COMMON.,

13 4

bl iaa

Answer: second

~99¢-

V.F.3

If the main program has the statement

l&_.. C for Comment FORTRAN CODING FORM
tate- |+
;inentNo.g FORTRAN STATEMENT
Bi7 50
Lt OMMON, ALB v v vl s by be v b v v g b o by g gl

and a subprogram has the same COMMCN statement, then references
to the variables A and B in the subprogram will use the same values as
references to A and B in the main program. This follows from the fact
that the subprogram will assign the two variables to the same computer
memory locations.

Please notice that the order of assignment to the common area of
memory is the important factor and not the names of the variables. If
a COMMON statement in the subprogram had contained only the
variable B, would a reference to B in the subprogram use the value

of B in the main program ?

Actually, the value of A from the main program would be used. An
illustration follows:

main program common area subprogram
COMMON A = value 1 - COMMON B

COMMON B . value 2

73 84

Lo vl

Answer: No

-L9é-

V.F.4
(Cont.)

V.F.5

C for Comment

In making variables available to subprograms through the use of
COMMON, it is the of the variable in the COMMON definition
which is important and not the variable name.

When a subscripted variable is put in COMMON, the entire array is
assigned to COMMON. For example, the two statements

FORTRAN CODING FORM

‘Etate-— b=
{nent NolS FORTRAN STATEMENT
&7 50
COM '
L1k lOl!NﬁOl:NllQl,lAlLllllllllllllllliilllllllllllIJlll
MR QI}WEIanilnqule(lsn)lnlllllllllnullllllll:llllninxl
will place A in the fourth location of COMMON.
The statements
C for Comment FORTRAN CODING FORM
%":ﬁfﬁoz FORTRAN STATEMENT
BT 50
Ll CIOJN[LIV{()IIEIRI’lPL’LZIIJIllllllllllllllllllllllllJlJLl
Ll :IME!}IAEILOEII 1513191)1’3:](&101)1 ca e e g b v s b gl e gl
will place P in the location of COMMON
V.F.6 Often a main program has many variables, with different variables

being needed by different subprograms. To avoid including all common
variables in all the subprograms, it is possible to define several common
areas. This is done by assigning names to the different common areas.

Answer: position

73 80

ol i b e

le v o o 1 b a1

73 2(

Laodb o by

I T B U |

Answer: 31st

-89¢-

V.F.6
{Cont.)

The variables needed by a specific subprogram can be grouped into a
separate common area. The different common areas are identified
by a . . Answer: name

The common area with no name is called blank common. The common
areas with names are called labeled common and the name identifies the
different blocks. The following statements show how labeled common is
defined.)

for Comment FORTRAN CODING FORM

ment Neo

@mte— (4;?
O
-

FORTRAN STATEMENT

. . 50 73 %
a0l ClOMNI[ONIl/lTlRlEﬂNﬁq/lAl’iBl’lC!llllinallllkliiﬁlnli:nanl T I A AR »
i it CDWMON,./BL;KL/X{,.Y”ZH.Hxluui“nunH«,l;Hagi_ | TN W I
The block name appears between the two slashes. The variables are
ordered within the common blocks in the same way they are ordered
in blank common.
IfX, Y, and Z are simple variables, Z will occupy the location
of block BLKL. ; Answer: third
V.F.8 Names of common blocks may be 1-7 characters. If the first character

is a number, all must be numbers within that name. A labeled common name
may be the same as a variable name used within the program but cannot be
the same as a subprogram name,

~69¢~

V.F.8 If the first character of a block common is' a number, then all
(Cont.) characters in the name must be

V.F.9 Blank common and labeled common may be used in the same program.
A particular variable must only appear once in a COMMON statement.

Is it permissible to define the variable A in the common block TREND
and also in the common block THINK ?

Blank common and labeled common declarations can be made in the
same COMMON statement. The // indicates blank common.

In the COMMON statement

r__'__ C for Comment FORTRAN CODING FORM
\State- =
{nent Nold FORTRAN STATEMENT

27 50

b1 44 QOWONI 1/rBILK11 l/ A(T;Ml’l ITIEMP //fxl’l |’|ZI/L]3iI‘iK21/|T|A|B|X "(‘IGI)I’I

=t

TABY(G)//AF CL, K

L1} R AN NN TN RN NN NN NN e

what variables are located (1) in the labled common block, BLK1; (2) in the
labled common block, BILK2; (3) in blank common ?
(1) :
(2)
(3)

Answer: numbers

Answer: No

i
73 _20

Lo bty

| TR S U B B W O A

Answer:

(1) ATM, TEMP

(2) TABX, TABY

(3 X, Y, Z, AF, CL, X

~0L%~

V.F.10

C for Comment

The subroutine EXCHNG is now written using COMMON,

FORTRAN CODING FORM

d;‘cate—

ent NQ ;gj . FORTRAN STATEMENT 0
;2 | SUBROUTINE EXCHNG | 1, 0yl eas b ol aaliaagl
1o | JCOMMON, AB, 4 gl b g s boa s by aatasyal
o VATEMPEB s by b b e e b
BRI BA=ALI!l!ﬂlrn!llllll-sllllllllilllljllIllﬂlilll!
[ot P M TS NS NS T TN RN NS W
oy [RETORN 0y b b b b b e b s
A | END et e v b e b b s kg]

The meain program from section

C for Comment

V.D.5 is now written using COMMON.

FORTRAN CODING FORM

75 8y

b et taa

(AR R A O IR A

tate- |+

%netho = FORTRAN STATEMENT

| I L 50
i C!OWO!NNI}{B’EYQaﬂlililal&nn!@sxlu@lﬂaslaaﬂuiﬂani
b g azigisl'lﬁﬂuﬂiBia‘ﬁgilﬂﬂiﬂﬂﬂlllﬁlﬂAIaﬂ?\lﬂlﬁ!i!ijg
PR I ij=13!@s’%7n!\ainéslinllailanlllnln!!n!&gl!ﬁ!ga]
N G Tl :EKuCHHNG;QIBzluainan'n!aa:!laﬁxxlalaniaL'xaE

IS T N N I

The value of X after the reference to EXCHNG is

Warning: If a variable appears in COMMON in a subprogram,

it must not be a formal parameter of the same subprogram,

Lo g gt vy

Answer: 30.7

~TLg-

V.F.11

For convenience, it is permissible to declare the dimensions of a

subscripted variable in the COMMON or type statements. This

means that if a variable must appear in a COMMON or type
statement there is no need to enter it again in a DIMENSION
statement. The dimension must be declared in only oné of the
three gtatements, COMMON, type and DIMENSION.

This is illustrated in the following statement sets.

FORTRAN CODING FORM

42

C for Comment
#tate— =

ment Nol FORTRAN STATEMENT
57 50
VCI*J*l*i* T R NN TN TN NN RS RS |
Loy | JCOMMON/ A/ A) b Bi(A)LISG2) 0 Loy s Lo a s bty al g gyl
v a o [JCOMBLEX, St 4 4 0 bvu v by v oo b ol ooty gl
Lt x[tlx|1V|‘I:111_11144111in|||1|1|J|I||1|l:1;1|
CoRRkd SET 12 v a bt ea it o by sl alas il oyl
I CpMM@:M/A/lQu;R(:‘h)n:S.nLlJnnan.(Jn_rlnl.L::J:.snl
L IMENSTON Q(4)LSG200 5 v oy by g a s by v by a by gl
Lt g WOMPITAFEX) 8L v v g s Lol gl ga s by ol yadsaaal
pddy PRTYNS IUINR VA0 S T A WO SNV W AN VIR W OV U SN WY M AU AT U0 B O ANV UE W U O AN MATAN S AN AT AT
I B ET 0 s e e e b
Lo | JCOMMON/A/G(AY bRy By Ly lu i ia bt ol ia sl iy
1111 | DIMENSTON RiGAY] v oo bova v da g e g v afav ool vaagld
2o | JCOMPLEX §(2),) o utv vy byl oabvn oyt y ol

In the first set, S is dimensioned in the statement.

In the second set, S is dimensioned in the statement,

In the third get, S is dimensioned in the statement.

Answer: COMMON
Answer: DIMENSION
Answer: type

=-%LG-

V.F.12

If a subprogram is to be used with many different main programs,

it is permissible to use integer variables in DIMENSION statements
within the subprogram. These are called variable dimensions or
adjustable dimensions. The following matrix multiply subroutine

illustrates this technique,

FORTRAN CODING FORM

C for Comment
tate- "E
ment No LS .

FORTRAN STATEMENT

o

UBROUTINE MATMU L (A}, /B, C.NL.M, K, NMAX), MMAX|, ,

Az

I MENS I ON| A (NMAX,, MMAX) {, Bl (MMAX], KMAX]) 1,1

==

1o LlCI(NMAIXI’KMAIXl)I i s g o Loy Kooy §oge]

£

e EERRE NN
L IOIEQI.IFJMN,lul.1441....1l.L.1..“1.;“‘.ukﬂ
L1l |01_3L011J1=11L’1KL111Ilxlgllllllll_Lllllx1111lllxxglj_\
a1 G I)=0900 s b b b b b b
b [POBO LM b e b by
P CUJ IV =G, IV HAGT,) *B)y b v v b b
A CloyJ‘IILquELI111|l‘|1L1111L11111}111L1l11_11114_111
11y ETURN oo e by bvvv e by a s e Lo o ben el s o
EPEEEE 5.7 RS G S I ST I I

The values NMAX, MMAX, and KMAX represent the maximum
permissible values of N, M, and K respectively. These maximum

values must be the same as the constants used in the corresponding

DIMENSION statements in the main program. The values of N, M, and
K may vary depending on the input data for a particular run., They must

always be the same or less than the maximum values used in dimensioning
the arrays. Specifically, when NMAX is 50, the value of N must never be

larger than s

T3 _R
S INUR T IR
N S U W T O
O O A A A (O O |
| T T W GO O N T
O (0 G O O |
T O O) 5 O O
[[
P i i w it ¢ 0 a3
| T I |
| il_llllll

lllll

Answer: 50

-§L2-

V., F,13

V.F, 14

The formal parameters of a subprogram cannot appear in COMMON.

Work exercise V., F in your workbook at this time,

V.G Block Data
vV.G.1 Often it is necessary to set up tables of constants which are used by the
program. There are several ways to handle data tables but some are
rather inefficient. One way is to read in the values as input data. This
means that a deck of cards containing the table values must be submitted
with each computer run. A second method is to write the constants into
the program. For example,
re
-7
N
H C for Comment FORTRAN CODING FORM
lgtate— =
‘Jjnenmoi_ 5 FORTRAN STATEMENT
R;L),'J 50
;D N [
S xIMq ISiIIOII\{ 1Al(13101)L111 Lo o v s fv i a e by gy o]
SR A ESE3-8 i b i e L b i
Lt LA T VI I R I A A S N I I I A A e |
AR R t(BI)fEx'?inz‘lgxLJ:ILI[:!;Lu;I;.(:!la;&fll1|Ln:1|1
it ek by o b e e b g a b g S by oy bp v s bovr g by gl
| S SRR -1-141:114_1x11111111111;11111:11:!11;11:1:1L:L}_

This method should not be used for a large number of values. There
are two reasons for the previous statement. The first disadvantage

is that the amount of computer memory required is twice that of other
methods. This arises from the fact that the constants must be stored
and then moved fo the array when execution of the program occurs. The
second disadvantage is the computer time required to move the constants
to the array.

73 2{)
sl
SN NNEE
ST N RS NS A O 1
[T S U A RS
1411.111 1

4

llll!lILL

~GLG-

V.G.1 The block data subprogram places the constants in the appropriate array
(Cont.} locations at the time the subprogram is compiled. The only disadvantage
" of this method is that the variables involved must be in labeled common.

V.G.2 No computations are permitted in a block data subprogram. In fact, it
is not assigned a name and no reference may be made to it.

All variables which are assigned constants values in a block data sub-
prograin must appear in a . statement, Answer: labeled common

V.G.3 _Type aad DIMENSION statements must also be included when appropriate.
The actual assignment of constants to the different variables is accomplished
by the use of DATA statements. The simplest form of the DATA statement
is the word DATA followed by the variables to be assigned values, a slash,
the values, then an ending slash. For example,

FORTRAN CODING FORM

C for Comment :
ﬂ%?;f&o E , FORTRAN STATEMENT . B
57 20
P i ‘ILJOICIKP)AT]AllllllJllllllllllllllllglIllllLllll [I IR
R CPMMOIN/tABITIIlSJE/lAl SRR OOV SRR A0 N N0 YA O YO U0 N W Y U AU OO O S IR AU N BN
Caa D.A‘TrAl.A.,./i3...,.41-7/. TS I I BN S ST R
[F.:NJDI:::rl1114111:.11111411IIJIJIJJlllgxllxnlll I ER T U 0 OO B W

will set A to the value 3.64and B to the value 4.7.

~9Lé-

V.G.3 The variables A and B are assigned to the common block named .. Answer: ARTIST
(Cont.) '

vV.Gg.4 A more useful form of the DATA statement is shown in the following
example.

FORTRAN CODING FORM

C for Comment
fgtate‘ E FORTRAN STATEMENT |
gnentNo.o -
N @lird 50| 73 8
[1LlolcjllglIDYA;I‘(X|lllllll!lllllll:lllllll‘llllllllll‘ I I IR W
b1 L_,_CIOMJMOINI/ITBIEN)Dl/RAl(Izlolol)l TN U N BT T 0 N OO N W Y U0 TS LS OO 0 T O l\ Lo o by
Lot d :TIAl(nAx(xI AR niFilnl?'|0|0) u/léxnonnﬁl-nznalzol*llnzn10111117151*101' pl?LJ_\l TN T B R
Lt 11&;-13,:2:’3:11101-;01/1 A DT N NN U S U 000 1 WO VA U T Y N U 0 O U O OO G T Ll (I S IR U W B |
Lt EMDlxlnll11‘11;1:1111111:11111111!|il:l|1111) | IR T T P S B T

This form permits the assignment of constants to data arrays. The |
(A(, I=1,200) is called an implied DO loop and works in a manner
similar to the DO loop. In the example above, the value of I takes

on all integer values from 1 to 200. Like a2 DO loop, an increment ‘
different from one may be specified. The 20%12. 0 means to use the |
real value 12. 0 twenty times. |

The 175%0. 0 means to use the real value one hundred and
seventy-five times. Answer: 0.0

-LLS-

Different constant types may be mixed in the same DATA statement.
The constant type should match the corresponding variable type,

V.G.5
however.
If the type of the variable is integer, the corresponding constant
should be .
- V.G.6 Work exercise V. G. in your workbook at this time.

Answer: integer

V.H EQUIVALENCE Statements

It is often desirable to have alternate names for the same storage
location. In FORTRAN, the vehicle which allows alternate names
of storage locations is the EQUIVALENCE declaration.

V.H.1 The EQUIVALENCE declaration is coded as follows:
fiState- "1 FORTRAN STATEMENT "1
!%nentNgfg v ‘ ' 50! ’ 73 80
T |
\ oo ElQlU-lIiV[ALE(ENiCIE 1(rA!’1Ei)1’|(ch’1D|’1mx Y000 NN W L U OO OO0 0 N 0 TS T U A W OO0 LL‘ FETIR AT S ER N
Each set of parentheses encloses the variables that share a storage
location.

-8L%~

In the above example, suppose A, B, C, D, M are all simple
variables. Which sets of variables share storage locations ? Answer: A and B share one.
C, D, M share another,

V.H.2 The order of variables within the parentheses is immaterial. Thus
the same result may be obtained from: EQUIVALENCE (M, C, D), (B, A).

Notice that the variable set C, D, M involves both real and integer -
variables. More about that later,

The EQUIVALENCE declaration is a non-executable statement that can
appear anywhere in a program or subprogram.

The EQUIVALENCE declaration is used more often with arrays than
with simple variables. Double precision and complex variables may
also be involved,

In earlier sections, you learned of three non-executable FORTRAN TR o
statements that allow dimensioning of arrays. Name them. Apswer: COMMON, DIMENSION,

type

~6LG~

Arrays to be used in the EQUIVALENCE declaration must be
dimensioned in either a COMMON, DIMENSION, or type statement
in the same program or subprogram,

Entire arrays may be equivalenced, viz:

State- o !
]fnemNO}_a FORTRAN STATEMENT g
RASL 50

|

| |G OMMON, l/xClOerlx/x 1A1(151)1’3131(15|)1 Lo iaa oot ea e b o
it l,._%, PEJl\{IlEleJI1ONI vlcl(l7l)l e L S SR N A N RN N BN SR L
L ElQplIleAllelNlanx x(lAl’:CI)x by e by v b g by b ey IL]

This series of statements specifies that the array C will begin
at the same location as the array A. That is,

C(1) is the same as A(1)
C(2) is the same as A(2)

Complete the array through C(7) using " <=>" for "is the same as'".

Remember that the array B immediately follows the array A in storage

when defined in COMMON. The first two locations of B were equivalenced

to the last two of C implicitly -- just because B follows A.

1
1

73 30

!

¢
Ly b g a

i
00T S W S U JE W S

Answer: C(3)<=>A(3)
C(4)<=>A(4)
C(5)<=>A(5)
C(6)<=>B(1)
C(T)<=>B(2)

-985-

V.H.3
{Cont.)

—— C fo

The same result could have been obtained by writing:

r Comment

FORTRAN CODING FORM

IState- FORTRAN STATEMENT :
pewNed, 50
]_J._L” l_; ;COM;MON 'OMl / J'Al(*sl)i’ [Bl(él)l 1N MR O U A N O U A T O N U0 A ST "
‘ adL i*w;.LIMENSIOI\H C (7) R U TR U N O HO T T U T T Y N O S S 14’%
}H TEQUI‘VALENCE (C(G),,,Bﬂl..lx,,ml,_.1,,.m.HLL:;

When writien as shown, the first five locations of C correspond
to the respective locations of A, Why?

Notice that C(6) was written in the EQUIVALENCE statement, C(6)

refers to the sixth location of C and not to the total dimension of the

array. The array must have been dimensioned in 2 COMMON or
DIMENSION statement,

‘!
L 73 w~._“~_8,o
|

[N, l L_J_L__‘._l_vi_l_.

EJ_J__L __L_LA_J,J__

5 IR TR M U0 B S SR W

Answer: A immediately precedes
B in COMMON,

-18¢-

V.H.3
(Cont.)

You have seen two different ways of equivalencing the same arrays
using different elements of C. There are seven such ways using
A, B, C as defined above.

C for Comment

Write them:

FORTRAN CODING FORM

z p
,‘%lgff;]g FORTRAN STATEMENT
1 £07 , 50
Ll I 1] VNI AU U0 T N T L O AT R AT O 0 WY O O A O Lo o !
[N 1 | T N T W O A BT A AN S OV N A S AT A N A IR
NI | L L T TS SR WY N N0 N OV T VU S ST STV T O OO0 TR O O Laga gt
111 1] ! SN T T O O O N OO U O O O W AT A R R O A g 1!
Lt Lt 1 I S W T WO OO A O O AN U O L O W OO O O O I
1:11, L 1] T I BV S U B N S ST A A B AN A S A A Jxxxxn'f
Lt L | o d by s sy g b gl g boepg g 1)
Il L L] g | T W S WS 0 S N Y A A SRR W A S E O O A .lllllJ_[}
AN I L | N AT SN AU RN B SR AT U AU AT AN R N AT lnx::”
Lt 1 g L 1 T T IO DO VO VO SV T ST R A MT OO A O BN B lllLlll
L L p | 11111L4!«11111x1|l;11'11ll [IIIIJJ
Ll L i TUNE 000 N T N VS SOV WO Y M T SR NS A B A S O llllIJ_(
1} L i 1 [T I SO0 N AUV W I S N BT WO W B N AT S S SO llllllj
Ll L e i b e by e b s e g lllllL\
Lt L i e d v v by g by v b g foJ_lil
PR i il AN I B AT N NN 14111,’1
L.|WJ,VI__M.Y,.AU 1} I W NN A I !1:1151

|

[I T SR BT

E_l_!llllrll
J_]_Lll]lll])

-l'(lllllll

RV PPN SR

{Illj_lLlﬁ]l
I L]
{1111111111
flllllllilL

\

=886~

V.H.3
{Cont.})

e

C for Comment

FORTRAN CODING FORM

= TORTRAN STATEMENT |
' .3 5.04“}
.. EQUIVALENCE (A,0), | or EQULVALENCE (A(1, nucmo%
E Lot Cia ey L O9F ;ElQin;Y\folLE;NC:E» (Co A i ’
b bty 1 OF BQUIVALENCE z(.Cz(‘l;)m (”')
%::»1}:|’1{xv11l1.1&‘.'1‘1i1'xt$x1111’!"1vv!11!!11“
SRER ! %ELQJUIF]JA'LEXNCIE' (A(zlll’ 1C (2)) R T O O T N O
%'A_J_“"%A_'l'lyv15x I IS AU AN AT RN U ST AU RN ATINT AT SRR
}‘ H_‘__:;E UIVALENCE (A (3), G080 1,

‘; '\!EL'I'.&[l!lJll!l[L’}‘i’lll%Il!(iIlill!]11‘1«1V‘
L, EQUIVALENCE (A{4),C(4)) ., ... s
| x_%xwiuulll ! 11'_.‘11“‘,'\1_!;&'.“'x-u»‘
i Lo EQULVALENCE (Aj(S)nH,L_LH PSRN ST AR A
l 'I,_i\glIll"111ii]lfXlII[ILLL__L_I"'i*!Ilill'Jil!l!E%
L H,igEIQIUVALLNcE (B, C(8)) el
: 1‘iLlliI'l‘!Illiilll'}ll[LJl):I‘.lllIil!lliilllg\’
... EQUIVALENCE (B(2),C/(7)), | ;’

AR AR

Answer:

T

, !

) !

73 80
!

Do b)

t

o L L

I

[N SO T NN SO ST S DO

‘)] H

SN R O U T N S N I

|

R TR O R

!

S BN R N A
I
IS N B SRR
j
I
f N
{
:
! L1 Lo
;
e S
c! 1
I NN TR N U UL S
b
R T N N B S N
! ;
. ¢
(U TN OO UONR T S N H TS T |
N :
. !
\;‘11111'1‘13_
!
. \ '

V.H.4 It is possible to equivalence arrays of different dimensions. Consider
the following example:

C for Comment FORTRAN CODING FORM

LSL te-] : .
[m N - FORTRAN STATZMENT §
L AT 50

‘ bIMENSION D(5,2), E(S)l F(5),G(12)

R TG A S A0 NS00 LOR N SR T O

i 121

‘EQUIVALEN'CE (D(111 111)) 1))l’r(le(zl 2] I)I’xF!); IR BRI L

Assuming D, E, F, G are not c‘omplex or double precision, complete

the following tableau where " <=>" is "is the same as''.
D@, 1) <=§ E(1) <=> G(1)
D(2, 1) <=> E(2) <=> G(2)

G(3)

G(4)

G(5)

G(6)

G(7)

G(8)

G(9)

G(10)

G(11)

G(12)

Answer:

D,
D(2,
D(3,
D4,
D(5,
D(1,
D(2,
D3,
D4,
D(5,

1) <=> E(1) <=> G(1)
1) <=> E(2) <=> G(2)
1) <=> E(3) <=> G(3)
1) <=> E(4) <=> G(4)
1) <=> E(5) <=> G(5)
2) <=> F(1) <=> G(6)
2) <=> F(2) <=> G(7)
2) <=> F(3) <=> G(8)
2) <=> F(4) <=> G(9)
2) <=> F(5) <=> G(10)
G(11)
G(12)

Notice that we have forced an order on E and F--namely, F follows E.
Also, there are no correspondents for G(11) and G(12). We pointedly
ignored double precision and complex variables until now. Given the
following sequence of statements:

FORTRAN CODING FORM

for Comment 1 ?
" FORTRAN STATEMENT |
RERe, ' 50 L 73 20

. SOMP{L!EE IX (NI Y SN NN 0 N0 N VO U 1 W 0 0 IO W AR SO0 O SC 0 OO A0 A “ ?-LJJ'-L L W
4 i)
- DIMENSION R (2),

R T :
Pl R RN U SO U S DU N DOUO N

-$8¢-

lxr:’ttztlax;_JlLJLJ’;x'vr’x:l'(;

EJQzUva'ALLLExNI CxE’ r!P{L’ x'.Rl (111) i 1:R|E1ALLI)<1) i’x(lRl (zzl)4 s »Cl PEJXL)) fo ! : R RTRRTON W0 0 S B N
How would you think the real and imaginary portions of X would be Answer: real part of X in R(1)

addressed? or REALX

imaginary part of X
in R(2) or CPLX

The EQUIVALENCE declaration used as above is one way to get
directly at the imaginary part of a complex variable or the least
significant part of a double precision variable,

FORTRAN CODING FORM

: |

‘ == FORTRAN STATEMENT [| i

meotNe gy | S

,;,JQ\?J?&LEL;YLLXlll!ﬂ(JJ;’!llIlJ}JJllLJ el lll!f.i' MJ-}J—J—J!—,—‘——'——LJ-;

QIM%ES}qu‘ IY!(ISI_)L’ LHl(tlloi)l R SRR SIS AN NS NS AN U BN I A R T A B A A l SIS N T S
Suppose you wanted to reference the least significant portion of Y(2) by Answer:

the variable name DOWN. Write an EQUIVALENCE statement using
Y, H and DOWN that does it. EQUIVALENCE(Y, H), (H(4), DOWN)

-G8G~

We mentioned the notion of forcing an order on variables within a
program or subprogram. Certain restrictions have to be followed when

V.H.5
variables are in COMMON.
(1) Variables or arrays within COMMON cannot be reordered

by EQUIVALENCE. That is:

COMMON A, B
EQUIVALENCE (A, B)

is not allowed,
(2) COMMON should not be extended by EQUIVALENCE since

disastrous destruction of subsequent storage areas may result, In

other words, avoid things like:

COMMON /COM2/ C, D(5)

DIMENSION E(6)
EQUIVALENCE (D, E)
Setting E(6) would produce a store in the location following /COM2/

which might be another common area.
(3) Variables in different common areas may not be

equivalenced.
In addition to the above restrictions regarding COMMON, one

general restriction should be observed.
(4) Equivalenced arrays must be consistent. You can't

have something like:
DIMENSION A(3), B(2), C(2)
EQUIVALENCE(A, B), (A(3), C), (B(2), C)

=98¢~

V.H.5 Why not?
(Cont.)
In the following set of statements, each of the equivalences (a), (b},
(¢), (d) violates one of the restrictions. Write the number of the
restriction that has been ignored next to the equivalence:
! \
: C for Comment FORTRAN CODING FORM
(Sete 2 FORTRAN STATEMENT f;
mentNo.2 ;
e L30T 50
_, ' ‘gC|9WQN|/C]QM3l/1 IAl(i31)1’1B1(15|’!21)] T O T T O T A 0 O A W A ! '
! T H
: - ’CQMMQNl/quM41/« x‘q(i61’131)i"Dx('2J)! SR SO IR N OO VO T DU L 000 0 U I A O l“,
E_ L L__!LDIME!N;SIIIQNI ‘E'(xlxgl) 1’1‘F[(11131)1 [N TNS VN0 ST NN SN VO N WS SRS WOUS SO 0 BN S S B L !
a. Ll E;Q'qIVxAIL[ExN‘CxEx ((IEI(11191) 12 1B|(|5 2 2 .)1): [T U WA WS O N U 0 I O i ;
b. L E'Q:U'I!VXA!L'E‘N‘C]EX 1(|Fl’ :At) \’1(lFll(l'?l) 1’10!)1 (SR TN T N S W T OO T A I - {S
c. | ISR I S E:Q'UxI‘VAtL;ExNICxE(1(|El’ 101) 2 :(IE1(1119 «) l’lDl(nzl)l) e Loty] L
d. :
L ! x_‘___E"Q'qI’YAlL1EvN§qE' 1(101’va)| b v e e e e b e e by v by |

Answer:

The first parentheses require
() A@)<=>B()
() A(2)<=>B(2)
The second require
() A(3)<=>C(1)
The third require
(@) B(2)<=>C(1)

(b) and (d) states that A(2)<=>B(2)<=>C(1)
(c) states that A(3)<=>C(1)
C(1) cannot be both A(2) and A(3)

‘ !
;
L 73 an
| |
| .

T

i

]

t N
ST N TN S S0 T O

by N
?_L_’_L_.l.__L_.: S

TN S O O N W Y O

Loov g jer o at

IR TIR T T A T A U

v
;
RIS I

-L8%-

V.H.5
(Cont.)

Answer:

(2)-(2): /COMS3/ is only thirteen locations
long, thus, there is no place in COMS3 for
for the first six locations of E. We've
extended COMS backward which could be
dangerous.

(b)-(3): Both COMMONSs have been
equivalenced

(c)-(4): according to the parentheses (E, C),
D(1) should be E(19). The second parentheses
contradicts this

(d)-(1): can't reorder COMMON

-88%~

As the final step let's see what happens when a real variable is
equivalenced to an integer variable, Actually nothing very exciting
occurs.” You are allowed, however, to address the same variables

as integer or real depending on the variable name used. The
EQUIVALENCE statement does not cause any real-integer conversion,
but the normal conversion rules apply in computations.

Suppose you wanted to read a ten word binary tape record into core and the
first, fourth, sixth, and tenth words were integer. You could do the
following:

DIMENSION PUTIN(10), INPUT(10)
EQUIVALENCE(PUTIN, INPUT)

and read the record into PUTIN (or INPUT)

Which values of INPUT would contain integer variables ?

Which values of PUTIN would contain integer variables ?

You would have to be careful in referring to the variables.

If you said X = INPUT(2) , a conversion of an already real variable

into a real variable would be made-- erroneously. Careful use of mixed
mode EQUIVALENCE can, however, facilitate programming, especially
in applications similar to the example. Input/output records often have
integer values representing checksums, identifiers and the like,

Work exercise V,H in your workbook at this time.

Answer:

Answer:

INPUT(1), INPUT{4),
INPUT(6), INPUT(10)

PUTIN(1), PUTIN(4),
PUTIN(6), PUTIN(10)

-6Ra~—

V.L1

V.L2

EXTERNAL Statement
The name of a function or subroutine subprogram may be used as an

actual parameter in a calling sequence, This is possible through the
proper usge of the EXTERNAL statement,

Consider the statement
CALL ADMAN (FIGS, X, Y, 2)
where FLGS is the name of a subroutine. Used in this manner, FLGS
looks exactly the same as X, Y, and Z. Therefore, it will be consid-
ered a variable and not a subroutine. The use of the statement
EXTERNAL FLGS
prior to the statement
CALL ADMAN (FLGS, X, Y, 2)

will identify FLGS as an external name (i.e., a function or subroutine
subprogram name).

A subprogram name may be placed in a calling sequence if the name
has been included in an statement. Answer: EXTERNAL

The form of the EXTERNAL statement is the word EXTERNAL
followed by the names of the subprograms which are to be used as
actual arguments in some calling sequence. The subprogram names
are separated by commas,

Write an EXTERNAL statement which declares SIN, COS, and TAN Answer:

as subprograms. ‘ EXTERNAL SIN, COS, TAN

~06%-

V.13 It would be easy at this point to confuse the use of a subprogram
name in a calling sequence with the use of a reference to a particular
function in the calling sequence. To clarify this point, examine the
following statements which are contained in the main program.

C for Comment FORTRAN CODING FORM

LStaIf;o E FORTRAN STATEMENT f
08 1 ' ‘ 50. 73 84
IR ; IEXTERLN'AILI ‘FLGS CRAlZ} N T 00 T N U0 0% T L 0 I WO 20 5 T B M MR 006 B W S ’ LL_J__!__L_l_i_!_z_:__g__i
Lot { (DI_MENSION X(ILOIO!)1’1131(‘.3L0'01);’lq(xsxox)"lpl(ilLO?Ou) 1’ 1Q1(13|0:OL) 1’31 " IR IR AR A A
L L,[;E,(,“;,,~L1,“,su.lx,u,x,ulx.1un,ulii e
1,xtllCALL'ADMAN (FLlGxSI’Xlezn)lllxul!l'lj_LM1¢11:L;}i‘(%!114.;.».15
‘-11|;CALL'GCNT'1(I‘@IS(1"X’L!)llllllllllll'lll‘\lLIJ'_l }!strxl-r1~:§
i (CALL ADMAN, (CRAZLB.QB) 4 eyttt I

Here the first statement defines FLGS and CRAZ as external names.
The third and fifth statements call ADMAN which expects a subpro-
gram entry plus three variables as parameters. The fourth statement
calls GCNT which expects three variables in the calling sequence.
Thus, FLGS(R) is an arithmetic expression which is evaluated before
the subroutine is called, The result of the function FLGS(K) then
becomes one of the actual parameters.

=162~

Consider the following code:

FORTRAN CODING FORM

i C for Comment '
s foe |
Ebmmi = FORTRAN STATIMENT |
Ixx ent\g_’;,_L ‘ 50_
e e =

!S UBROU TIlNLELxAlDerANl(JFNICI "IA’ 'P{’! ')1_ EEETENEEEEEE RN
wQEMQNSION A(100),B(300),0(50) , v 101

i ! 1:1:[§
LJJ,;“|D0 10, I=1,50, bt
"__L_l__.v__x A(Z*I)—FNCT(I)IL1(61*11Q|_|C1(¢);11 T L T O O lxr[i;
l’Llllo'iCI()INiTIII&UlE!I[ll]!llll[LlII[LlIlELlllj_llIl.’II[J_L_\
i'111_;?[PE:'T1U1RE11111_11111[11IL|||'LL1||141[11111|W|1||J;

Since FNCT is not dimensioned, it will be recognized as a function.

Its appearance as a formal parameter, however, will mean that
the function entry location is supplied by the main program. This
means that the function which is actually used in performing the
calculations is whatever function name appears as an actual
parameter in the call to ADMAN.

Again consider the main program code which was seen earlier.

!_..'_'_' I<__1;__ ELXxTE'RNAL\ FLGS,ICRAZ ¢ bl b L
{ ., IDIMENSION X (100) ,B(800),C(50),P(100),Q(800) .
L ongul L.urR~(..xiH[lul,llv.u_“v-44111L pas gl
Tf_J_x_ul | C;A'Lll‘w lAleMlAPI (FLl e i 1X1’1Y Izl)l_t_l TN O O 0 O O, (O O xii‘
11112 CALL GCNT [([FI:LIC}SJIKI)',P(I’Y)IIJI'IJll[1! = 'xi-|113!
e CALHJéPMANlJQWAZHRHQ;,JL_II,hszr,L,,11!,,[|V

T i
TS, T 0

1 L
\lJ;llIA‘I'

‘ ! i
T) A 0) (O, S 1

3 O O O O A
|

230 . B

|

1S O O OO O,

VQ IO 3
(Cont.)

V.I.4

fifth statement will use function

The third statement will call ADMAN and indicate that function
be used in the calculations to be performed. The

Work exercise V,I in your workbook at this time,

Exercise V. J in your workbook is a review of Part V. Work
exercise V, J at this time. .

in the same manner.

Answer: FLGS, CRAZ

VI.

INPUT/OUTPUT EXTENDED

Introduction

In part IV, you learned about the conversion types available for real, integer, complex,
and alphanumeric quantities. These were Ew.d, Fw.d, Iw and wH. The individual format
specifications are sufficient to read data, input headings and general information, and print
results for the average FORTRAN program.

In this chapter, input/output is extended to include topics beyond the minimum FORTRAN
capability. We will study conversion types for double precision and logical variables, scale
factors, formats and techniques for character manipulation, statements for rearranging and
changing information in storage, mput/output with NAMELIST, and other features for more
flexible programming.

Dw.d, Input and Oufput

Before reading the following sections on double precision input and output, it is suggested
that you review the discussion of the double precision mode in II.E, and Ew.d conversion
in IV.E (Output), IV.F (Input}.

Dw.d conversion is used for input and output of double precision quantities., A double
precision quantity is represented and used like a real quantity but has more digits. Thus
Dw.d conversion is similar to Ew.d conversion, except that (1) D replaces the E in the
format specification, (2) two memory locations are allocated for each double precision
quantity, (3) the list variables must be double precision names. Both w and d have the
same meaning.

~$6%-

Vi.A.2
(Cont.)

Example:

DOUBLE EXTEND(50)
10 FORMAT (4D18.,7)
READ 10, EXTEND

In the example above, EXTEND is an array name typed as double precision. The number
of double precision elements in the array is 50, but the number of memory locations
reserved is 100,

Dw.d Input

The field occupies w positions (card columns) of the input record, and must be wide encugh
to contain the input quantity. Since the value on the card is converted to double precision,
both D and E are acceptable as the beginning of the exponent subfield; e, g., the Dw.d type
number (-6228.4D5) has an integer, fraction, and exponent subfield.

E‘xamples:
(1) DOUBLE PRECISION A,B,C
READ 6,A,B,C
6 FORMAT (3D18.7)

Input Card ‘
~1.23456T89543D-05 TE123E+01] -164502.0159 S

0000000000000000 0POOOOOO0COO000D0D O[OGOD0AS 00 0OCOOOONOROCO

12345678 910NM12131515161718 9 20 21 222324 2526 27 2823 30 3132 33 34 35 35037 28 39 40 a1 47 4344 45 46 47 482350 51 5253 54 'S 56 57 56 5969

ORIt ittty i g ue et eanet 408100 11t 1991111 111t tfiiitet

e B it

S

VI.A.3 -

{(Cont.)

How many storage locations are allocated for B in

the example above ?

(2) DOUBLE W(4)
READ 15, W
15 FORMAT (4D18.7)

Input Card

Answer: 2

1.473:2841119620-14

TV 2.

000000000080000000

123456 783%10112131815161718

IRERRRE 11111 1

1111111111111

IR RN RRRRREE

BUBIJGDO000Uﬁ000DDUOG00000l]ﬂ00000000DLUUUGUUUDOUUOUUDGU 0

9 20 21 222324 25 28 27 28 29 30 31 32 33 34 3535 37 38 39 40 41 42 4 44 4546 47 48 49 50 51 52 52 5¢

IRRRRRE

[N

5 56 57 58 53 60 61 62 63 64 65 66 67 68 63 70 11 72

NEERRRERRERRRRRERE B

)

Which of the quantities shown on the input card above are
acceptable as double precision input ?

After input of the value for W(4), what value will be contained

in storage ?

Answer:

Answer:

Which subfields are present in the data for W(1), W(2), and W(3) ?

W(1)

w(2)

W(3)

Answer:
Answer:

Answer:

all

. 0000025

Integer, fraction,
exponent
Integer, exponent

Integer, fraction

VI.A.4

Dw.d Output
The form of outfput for the- D field specification is:
i“a,éa.‘c..aie:ée - 100 < eee < 322
or
ia.aé.;..,aDj;ee | 0< ee< 99

where the "a's' are the most significant digits of the integer and
fractional parts, and the "e's" are the digits in the exponent. If
the sign is positive, the first position is blank. The field occupies
w positions (print positions) of the output record. It must be wide

enough to contain a sign, decimal point, and subfields of the output
form.

Let's consider example (2) in section A.3 and assume that the input
card has been read and values stored. The stored values printed by
a D37.29 format specification would be:

bb1.47938411196200000000000000000D-14
bb1,00000000000000000000000000000D+09
b~-3.72499821355246899999999999998D+03
bb2.49999999999999999999999999999D-06

Variables in the double precision mode are significant to approximately
29 digits . On output, part of this significance may be lost in the output
conversion routine, and digits printed beyond the 28th place may not be
reliable. :

-L6G-

VI.A 4
(Cont.)

VI.A.5

In the example above, the last two answers are not exact. Consider
the format specification D37.29. By this specification 30 digits

were printed, and the limit of reliability was exceeded by two places.
If .000025 had been printed by a specification D35.27, the last answer
would have been

bb2, 500000000000000000000000000D-06
In most cases you will not print the maximum number of digits, but

restrict your output to a more suitable format such as the one in the
example below,

The stored values printed by a D15.7 specification would be:
bb1.4793841D~14
bb1.0000000D+09
b-3.7249982D+03
bb2.5000000D-06

From the examples shown, note that Dw.d conversion and Ew.d
conversion follow the same general rules.

Work exercise VI.A in your workbook at this time,

VI.B

Vi.B.1

Vi.B.2

Gw .d Input and Output

Gw .d input specifications are the same ‘as Fw.d speciﬁcations .

(Reference IV .H)

Gw .d output specifications are interpreted as F conversion or
E conversion depending on the magnitude of the number to be
printed, w, and d.

Gw.d is used for F conversion when |nl (the number) < 10d.

1. d indicates significant figures to be printed (not
number of decimals) ‘

2. w must be large enough to accommodate four blanks
which are automatically inserted into the field right
justified (these positions would contain the exponent
subfield on an E-type conversion), the decimal point,
d digits, and space for the sign. A field width of

w>d + 6 is necessary for effective use by the F conversion.

T i

VI.B.2 Example:
(Cont.)

Gw.d uses the E conversion when N > 107,

In core storage A = 732,962, B=-24.75, and C=1,7532,
With an output specification of G9.4 the printed values appear
as follows:

A = 733,0bbbb, B = * 4, 75bbbb, C = 1.753bbbb
' w=9, d=4

The field width is less than d + 6. "B'' cannot be output
effectively because there is not space for the sign.

d

~66¢-

You will recall the E conversion requires w > d+7.

The same requirement is imposed upon the G specification.

In the example above if the output specification were G9.2 the

output would be :

A =b7.33E+02, B =b-25.bbbb, C =bbl. 8bbbb

VI.B.3 For the quantity 76543.21 which conversion type would be used for the
following Gw .d output specifications ? What would the output look like ?

A, G9.0

B. Gl2.6
C. Gl2.2

Answer: A. E bbbb8E+04
B. F b76543 . 2bbbb
C. E bbbb7.65E+04

-008&-

VIi.B.3
(Cont.)

The answers to the questions above are obtained as follows:

A, N=176543.21 G9.0 w=9 d=0"
w > d+7 but 76543.21 > 10°
Therefore, the E specification would be used, (E9.0)

bbbb8E+04
I T
w=9

N = 76543,21 G12.6 w=12 d=6
6

Bﬂ
w>d+6 and 76543.21 < 10
Therefore, the F specification is used. (with d significant figures)

b76543.2bbbb
w=12

N =176543,21 Gi12.2 w=12 d=2

w > d+7 but 76543.21 > 102

Cc
Therefore, the E specification is used, (E12.2)

bbbb7 .65E+04

TR e

w¥12

Work exercise VI, B in your workbook at this time,

Vi.B.4

NINDEGEEE

-10€~-

VI1.C

VI.C.2

Lw, Input and Output

The Lw specification is used for transmission of logical quantities.
Again, w specifies the total width of the field. On input, the field
is considered true or false if the first non-blank character in the
fieldis T or F, respectively.

Three cards have punched on them in the first eight columns

A. bTRUEbbb
B. bFALSEDbb
C. bbbbbbbT

What would be the value of the logical list item if these three cards
are read by L8 specification ? A,
B.
C.

Should the input field be entirely blank, it is considered false.
Using an L6 specification, what value would be input for

A. bFbbbb
B. bbbbbb
C. bbbTbb

Answer:

Answer:

True
False

True

False
False

True

—-60€-

VI.C.3

VI.C .4

When logical variables are to be output by an Lw specification,
a T or F is output for true or false, respectively, right
adjusted in a field filled with blanks.

If variable MAYBE is false, what is output for L2 specification ?

Work exercise VI.C in your workbook at this time.

Answer: bF

VI.D.2

Scale Factors

Another format specification is the scale factor, nP. This speci-
fication permits scaling of values during I/O when used in conjunction
with certain types of conversion.

For input, scale factors have effect only on F-conversion. For output,
scale factors may be used with the D, E, F, and G types of I/O con-
version. The effects obtained from the use of the scale factor depend
on the type of conversion and whether the operation is input or output.

The scale factor may be used with , , , or conversions. Answer: D, E, F, G

The effect of the scale factor will depend not only on the type of conversion,
but also on whether the operation is or . Answer: input, output

A scale factor of zero is assumed if no value is given.

Output

The format specification, nP, may be used as a separate entity in the
FORMAT statement or it may appear as a prefix of any D, E, F, or G
conversion. An important thing to remember is that once a scale factor

is used, it will remain in effect for all D, E, F, and G conversions following
the scale factor in the same FORMAT statement until a new scale factor is
introduced. ~

To nullify the effect of a scale factor, a subsequent scale factor of zero in the
same FORMAT statement must be specified by 0P. '

A scale factor is effective for the output of only one value. True or false?
Answer: False

-$0€-

Vi.D.3

The scale factor may be entered in any of the following ways:

npP _
nPFw.d
nPEw.d
nPGw. d
nPDw.d

where ~8<ng8
In the FORMAT statement -
20 FORMAT (2P, 312, F20.6)

a scale factor of 2 is established. Since scale factors do not apply
to the conversion, an equivalent statement would be

20 FORMAT (312, 2PF20. 6)
Now consider the effect of the scale factor, n, on the values being
converted, The following table illustrates this effect when used with
the different conversion types.
¥ Conversion
Input The input value is multiplied by 107" during conversion,

For example, a scale factor of one will cause a card
value of 2,367 to be stored in the computer as . 2367,

Answer: 1

-G0g-

VI.D.4
(Cont.)

Output The value in the computer is multiplied by 10™ before
being transmitted to the I/O unit. For example, a
scale factor of three will cause the value 2, 367 to be
printed as 2367.0.

E and D Conversion

Input The scale factor is not effective in this case.

Output The value is converted with n+1 digits to the left of the
decimal point. The exponent is adjusted so that the
value is not changed., For example, the value 23,68796
is to be printed using E conversion, The following table
{llustrates the effect of different scale factors.

Specification Printed Value
E16.3 2.369 E+01
1PE16,3 23.688 E+00
2PE16,3 236,880 E-01
3PE16.3 2368. 796 E-02
-1PE16.3 . 237 E+02
G Conversion
Input Same as F conversion.
Output - The effect of the scale factor is suspended when F-type

conversion occurs. The scale factor is effective when
the magnitude of the data requires that the E-type conversion
be used., In this case, the effect is the same as for E conversion.

-90&-

Vi.D.4
(Cont.)

vI.D.5

Provide the correct values for the tableAbelow.

External Value

Specification 1/0 Computer Value
2PF10.3 input

-1PF10.3 input
1PF10.3 output 3.26475

-2PF10.3 output 3.26475
0PF10.3 output 3.26475
2PE12.,5 input

-1PE10.4 output 3.26475

Example:

326.475
326.475

b3.26473E+00

DATA K,A,B,C/27,-932.096, ~.0075804, .55361/

102

103

104

100

101

{No scale factor, E-conversion)
PRINT 102, K,A,B,C

FORMAT (I3, 3E12.4)

{Scale factor, 1P, E-conversion)
PRINT 103, K,A,B,C

FORMAT (I3, 1P3E12.4)

{No scale factor, F-conversion)
PRINT 104, K,A,B,C

FORMAT (13, 3F11.3)

{Scale factor, 1P, F-conversion)
PRINT 100, K,A B,C

FORMAT (I3, 1P3F11.3)

(Scale factor, -1P, F - conversion)
PRINT 101, K,A,B,C

FORMAT (I3, -1P3F11.3)

27

27

27

27

27

-9.3210E+02

-93.2096E+01

~-932.096

~9320.960

-93.210

Answers:

3.26475
3264.75
32.648
.033

3.265
3.26475
b.3265E+01

{Printed Output)

-7.5804E-03 5.5361E-01

-75.8040E-04 55.3610E-02

-.008 .554
-.076 5.536
-.001 .055

-L0E~-

VI.D.5
{(Cont.)

VI.D.6

Example:

Array AA contains numerical values of a physical quantity that
is usually expressed as a number x 10°,

DIMENSION AA(5)
DATA AA/-932.096, -600.47, 1000.03, 24575., 738407,/

DATA K,B,C/27,-0075804, .55361/
(Scale factor, -5P, used, cancelled, and reused.)

PRINT 200, K, AA(L), B,C, (AA(L), I=2, 5)

200 FORMAT(I3,-5PF10.3, 6Hx10%*5, 0PE12.4,E12 .4/(-5PF13.3))
(Printed output)

27 -.009x10%*5 -7.5804E-03 5.5361E-01
-.006
.010
.246
7.384

Work exercises VI.D in your workbook at this time.

-80€-

VI.E.1

Group Specifications

Groups of specifications may be repeated by enclosing the group
in a set of parentheses, and preceding the set by the integer con-
stant required, Should it be desired to print out an integer, then a
real number, followed on the same line by another integer and real
number, the specifications might be

n FORMAT (2 (14, 2X, E15.7, 2X))

which is equivalent to
n FORMAT (14, 2X, E15.7, 2X, 14, 2X, E15.7, 2X)

What is the equivalent form of
n FORMAT (2XF¥5.1, 2XF5.1, 2XF5.1, 2X)

There is another way to cause specifications fo be repeated: the
innermost set of specifications in a FORMAT statement which is
enclosed in parentheses without a repetition factor preceding it

will be repeated as often as necessary to satisfy the corresponding
1/0 list. This set is known as an unlimited group, and any specifica~
tions to the right of an unlimited group will never be reached.

Answer:

n

FORMAT

(3 (2XF5.1), 2X)

-60¢&-

VI.E.2
(Cont.)

VI.E.3

VI.E.4

VI.E.5

Which are the unlimited groups in the following:

n FORMAT (I5, 2E10.4, (215))

A.
B. n FORMAT (2 (3XA10)/(1XE15.5))
C. n FORMAT (2 (F7.2), 3(14), (E10.6), I4)

. The right parenthesis of an unlimited group acts as a slash; that
' ‘is, when the specification is repeated, it is on a new line or card.
'The specifications

n FORMAT (315, (F10.2))

if used to print out ten list items would cause four items to be
printed on one line in 3I5, ¥10.2 format, then the next six to

follow, each on a new line in F10.2 format. A total of seven

lines would be printed.

How many lines would be required to print out a list of ten items
by the following formats ?

. n FORMAT (I4, 2X, 4I3/(1XE15.7))

A
B. n FORMAT (14, 2X, 413, (1XE15.7))
C.

n FORMAT (I4, 2X, 413, 1X, E15.7)

' 'Note that in part C, the entire set of format specifications forms
*- the unlimited group.

Work exercise VI.E in your workbook at this time.

Answer: A. (2I5)
B. (1XE15.5)
C. (E10.6)

Answer:

Op:i??

-07g-

VI.F Aw, Input

VI.F.1 Aw conversion on input reads FORTRAN (alphanumeric) characters
from a card and converts them to the 6000 Series console display code
for storage in the computer. (The 6000 Series console display code is
listed in Appendix A of the Control Data 6400/6500/6600 FORTRAN
Reference Manual.) Suppose an A10 format were used to read

; Exntiig
C Lok

STATEMENT . FORTRAN STATEMENT IDENTIFICATION

NUMBER

0‘000‘{lﬂﬂ00000Bﬂﬂ000000000ﬂDﬂﬂﬁﬂﬁODDﬂﬂﬂﬂ0000600IH!0ﬂBﬂDDGUBDDDDDDUDBOQGUDUUDDDBUZIB

1‘2 3 45(6i783 WH12!314?5181713!52{72!22232425252’72629%313233343538373&39(0414253444546474&49505‘52535455565758595081SZMMBSRSWS!SHWH'I!T!%"SNUNNW

1:1111 HHHHHHHHHH]HHH‘li’iHI111111111111111111IHHIHIHIIHHHHH

N

2)22222)22

I

The quantity stored in the computer would be

55555505300115201405
bbbEXAMPLE

Since the 6000 Series console display code requires two octal digits

to represent a single FORTRAN character, how many such

characters may be contained in a single CDC 6000 Series

computer word? Answer: 10

VI.F.2 If w in an Aw input conversion is greater than 10, the rightmost
ten characters of the field will be input. If w is less than 10,
the w characters will be stored left adjusted in the computer
word and the right end of the word will be filled out with blanks.

What will be stored when

0006006000000050C0000000000000000000
810

9103112130435 %6 17 18 192021 222324 25 26 27 28 29 30 31 32 33 34 35 25 37 23 33 40 41 42 4344 45 45 47 484950 51 5253 52 55 56 57 58 5960 61 62 63 64 6566676863 70 71 7273 74 1575 77 7879 5@

SRR R R R R R R R R R R R R AR R R R R AR R R R R RS

22_22222222222222222222222222222222222222

is read by‘
A. AlO : Answer: A,
B. Al2 . B.
C. A3 C.

VI.F.3 Work exercise VI.F in your workbook at this time.

bGERONIMOb
ER ONIMQb**
bGEbbbbbbb

~g1e-

VI.G

VI1.G.1

VIi.G.2

Aw, Cutput

Aw output converts internally-stored display code to FORTRAN
characters for printing or punching. If w is greater than 10,
the 10 characters will be output right adjusted and the field
filled with blanks. If w is less than 10, the left-most w
characters will be output,

Stored in the computer word is

55230520240515020522
bSEPTEMBER

What would be output for specification

A. Al2
B. A5
C. Al0

Work exercise VI, G in your workbook at this time.

Answer: A. bbbSEPTEMBER
B. bSEPT
C. bSEPTEMBER

VI.H Rw, Input and Output

VI.H.1 Rw conversion on input reads FORTRAN characters from a card
and converts them to console display code for storage in the computer.

For input, when w is less than 10, the quantity will be right adjusted
and the remainder of the word filled with octal zeros.

If the punched card has CENTIMETER punched in columns 1-10,
what will be stored in the computer if the card is read by an R4

specification ? Answer: 00000000000003051624
CENT
VI.H.2 Rw output converts internally-stored display code to FORTRAN
characters for printing or punching.
‘“'3. For output, when w is less than 10, the rightmost w characters
& will be output.

If the computer word contains

03051624111505240522
CENTIMETER

what will the output be for specification R5? Answer: METER

VI.H.3 Work exercise VI.H in your workbook at this time.

VI.I.1

b

+

Ow, Input and Output

Octal integers may be input by the O conversion. The field width
is determined by w which must be < 20.

Example:

READ 7, PSI, THETA, OMEGA
7 FORMAT (3010)

The following card contains the data which is read by the above
READ statement,

£

quuaWoe 90000000000000000000000060000006600000006000004006068

1!7 34sj81 B NNNRIUIBRNBISDN 2B U BBTBD0 I RN M 353730394041 4243 4 8 B0 4N 0 51 2 DERWIT DO G000

Vi.l.2

How will the values appear in storage ? Answer:
A. PSI A, 00000000000000052751
B. THETA B. 00000000000000003265
C¢. OMEGA C. 00000000000001547212

Octal integers are output by the O conversion with field width w.
If w < 20, the rightmost w octal digits will appear; if w > 20,
the number will be right adjusted and the field filled with blanks.

How will the quantity 72316400450511314277 appear output by Answer:
A. 020 A. 72316400450511314277
B. 025 B. bbbbb72316400450511314277

C. 015 C. 400450511314277

~G1€-

VI.I.4

Negative numbers will appear in their 1's complement form under
O-type conversion. For example, if the quantity - 3 is punched

on a card to be read under O-type conversion, it would appear in

storage as T77777777777777717774

.What would the internal number look like for ~265 read by 04

specification ?

Work exercise VI.I in your workbook at this time.

Answer: TTTT7777777777777512

-916-

VI.J. 1

VI.J.2

Variable Formats

In section IV you learned to write FORMAT statements. As you

. remember, these statements are not executable. That is, they do

not cause any computer operations to be generated. They are used
only as a source of information for the I/O statements. In this
section you will learn to read this information into the computer
just as you would read values for different variables.

The information in a FORMAT statement is stored and then inter-
preted at the time the I/0 takes place.

A FORMAT statement is not It is used to supply

information for statements.

The information from the FORMAT statement which is stored begins
with the first parenthesis after the word FORMAT and ends with the
last parenthesis in the statement.

What information is stored from the following FORMAT statement ?

FORTRAN CODING FORM

C for Comment

tate-
)l'nent Ng

3

(&

7

FORTRAN STATEMENT- \
50

2.0

|

quRJMAlTx(llelln'11101XI’11131)1 | SR S AU U W TN N 00 W T W0 A Y W T NS S U 1‘

Answer: executable
Answer: I/0

73 8

bl

Answer: (1H1, 10X, I3)

-L18-

VI.J. 4

VI.J.5

This information is stored in the computer in console display code.
Thus, each character including blanks requires six binary digits for
its uniqgue representation.

Since each computer word contains sixty bits and six are required for
each character when represented in the console display code, each

computer word can contain as many as characters, Answer:

Suppose that the characters (1H1, 10X, I3) are punched in the first
twelve columns of a computer card, These characters may be read
into the computer in console display code by reading two variables
according to the format specifications (A10, A2).

Information may be read into the computer in console display code

by use of the format specification. Answer:

You now know two facts which are necessary to the reading of formats
at execution time, These are:

1, The information contained in a FORMAT statement is stored
in console display code and is not used until the 1/0 takes
place.

2, Information read into the computer according to the A
format specification is stored in console display code.

10

A

816~

V1. J.6

When a format is required, an I/O statement usually references
the FORMAT statement by its number. However, the 1/0 state-
ment may use the name of an array instead of the FORMAT state-
ment number. When this is done, the I/O statement will assume

that the array contains the I/O format specifications in console
display code.

EXAMPLE:
READ FMT, X, A, B, C

FMT is the name of the array which contains the format specifications.

In most cases, the I/O statement refers to a particular format by
means of the associated with the format. Answer

When an array contains the format specifications, the reference to
the array in the I/O statement is not required to be the first location
in the array, but must reference the start of the format specifications.

The format reference in an I/O statement may be either a statement
number or an

. Answer:

. statement number

array name

VI.J.8 Format specifications read in at execution time are reterred
to as variable formats. This means that the formats may be
changed on any glv%n run, The following will illustrate how
variable formats are used.

FORTRAN CODING FORM

@e_—(ﬁ; for Comment

.{nentNgég FORTRAN STATEMENT 50 2o o
Ll DIMEINSIONI 1LFIORMT(151)1’|C(101017 NN I W ST O T O I S A O T A A
| READ 110 (quRnMTTl(lIl)l’lllx’n I)lnxxllxln'lllillullxl IS A AR !
o O FORMAT, (BATO0), | 0 v i i et aa P
TN YT YO A T O N SN T 100 SO S N T U A Y U OO T S0 W Y U N N W O 0 O M OO OO | N T N
L1 et e v b v b v e b e by g e by b by g g b gt L v st 44
[Wl T O N U Y O GO0 O N T N T U S TN T UV SO VAT Y Y T U T M A A W T A O A W A | I R S B N
L) AN/ AT BT AT TN BN ST SN Ur AU I AN AT AT S AT AT AT AT S AN BN A b ll11|11111x
| READ FORiMTn IAI ‘BI’Q(ICJ(I)’lIlllllolol) N W B S B U AT A If:[n;lxx[i
v b v b s e b b e by s by s b b el IR BN
L1y DSl b b e a dasa Lo v b e Lo a o | NI RN S
e e b P e b by o e e b e by a o |l (I,..,IHH

The first card read must contain format specification in columns 1

through . The specifications must begin with a

and end with a . These specifications are then used to

read the values of the variables s , and . ~ Answer: 50
parenthesis
parenthesis
A, B, C

-06¢€-

Following are examples of the input data required for the example

VI.J.9
in VI.J.8.

Card 1 is read by FORMAT (5A10) into LFORMT. Words 3, 4,
and 5 of LFORMT would contain blanks.

(2F10, 4/(5€16, 8))

0000 00 00200000

123456 78 9101 121314151617 18 13 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74 IS 76 77 78 79 80

Card 2 is read by 2F10.4 of LFORMT into A and B.

S54.321 -98.7¢

00000000000000UUUUDUDUU0000000000D00000ﬂUODOBUUUUUDDUDUUUDUUBUUODDDUUGUUUDJUUGUU

1 12345678 910112131415161718192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 4849 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 6768 69 70 71 72 73 74 15 76 77 78 79 80

Cards 3 - 22 are read by the 5E16.8 of LFORMT into the 100 locations

of the array C.
5o. 60,12 61. 35 62. 46 65.57

000000000000000000000600000001000300000

123456 78 9101 1213141516 17 18 13 20 21 2223 24 25 26 27 28 23 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 4546 47 484350 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 1S 76 77 78 79 80

VI.J.10 Work Exercise VI.J in vour workhenk at this time

VI.K.1

ENCODE/DECODE Statements

The use of formatted I/0 statements provides conversion of data

from binary to console display code on output and the reverse conver-
sion on input. The use of ENCODE/DECODE statements permit the
same conversions, but the results remain within the computer memory.

The ENCODE statement has the form
ENCODE (N, I, ALPHA) LIST
where
N ‘is the number of six-bit console display code characters
in each resulting record. This value may be an integer

constant or a simple variable.

I is a format statement number or an array name which
contains the format,

ALPHA is the beginning location where the converted information
will be stored.

LIST is an I/O list.

 For -example,

DIMENSION AMAT(5), K(2)
 ENCODE (20, 5, AMAT)K
5 FORMAT (219)

will convert the two integer values in the K array to 20 characters
in console display code. This representation of the values is then
stored in AMAT(1) and AMAT(2), ten characters in AMAT(1) and
ten characters in AMAT(2), The last two characters in AMAT(2)
will be blanks since the format only specifies 18 characters.

-¢68-

VI.K.1 Consider the statements
{Cont.)
. FORTRAN CODING FORM
P— C for Comment
ustate‘ T";{
pent’?o = FORTRAN STATEMENT }
O 50:
! |
L i QIMELN;Sx ON 1K1TIAB|(~61)1’1T{AP1LE\(&| VIS RN RN 14I§
-,J_,L_l_.l_.{_]?_lz\zlquE (301 lLl AB)l(TA E(J)I’lJl it ’11)011 ! 1:1!‘!
111115‘[F‘LOJRIIVMLTL(lEI6Ill/lelllll)lllllillj_llllllglIlllllLll'
Each record of converted information will contain characters.
There will be records generated,
The remainder of the first record will be filled with characters,

The second record will contain values from the array TABLE.

73

20

| I

>11l¢1L1414

LI_L Ll

Ll a1
)

FS W W W AR
]

Answer:

Answer:

Answer:

Answer:

30

blank

-£38-

In the previous code, there are two records generated because of
the slash in the FORMAT statement. Since the FORMAT state-
ment requires only one value for the first record, the value used

is TABLE(l). If the FORMAT statement requires fewer characters
than the number called for in the ENCODE statement, blanks are
added to meet the requirements of the ENCODE statement. Further,
a new record is always started at the beginning of a computer word,
Therefore, when the number of characters specified by the ENCODE
statement is not a multiple of ten, enough blank characters are
added at the end of each record to complete the computer word.

If the FORMAT statement requires twelve characters and the ENCODE
statement specifies fifteen characters, blank characters are
required to complete the record. Since fifteen is not a multiple of
ten, blank characters are needed to complete the last computer

word, Answer:

To illustrate the use of the ENCODE statement, assume that:

A(l) = 35.14159265
A(2) = 666,33333
7 = 466,2743

ZB = 425,999999
K = 125

These values will now be converted to console display code and stored
into the array B according to a specified format,

VI.K.3
{(Cont.)

Case 1.

After execution of the ENCODE statement, the B array will contain
the following console display code characters.

word 1
word 2
word 3

word 4

Case 2,

After execution of the ENCODE statement, the B array will contain
the following console display code characters,

word 1
word 2

word 3

In both cases, notice the correspondence between the characters
stored in the B array and the characters which would be printed
if the same variables were printed using the same FORMAT

statement.

DIMENSION B(4)

ENCODE (38, 10, B) A(1), A(2), Z, ZB, K
10 FORMAT (F7.4, E12.5, F8.3, F7.2, I4)

1

bji3}. 4{1}{6(b] 6¢.
6(6]13]3|3|Ej+10{21{D
41616 2]7}14]|bj4]2
6].]1]0{0]b|1]l215]bib

ENCODE (26, 20, B) ZB, K
20 FORMAT (F16.4, I10)

bibibi{bibi|b 2
.10j0j010 b
blbibj1}2i5 b

-Gzg-

VL.K.4 The DECODE statement takes the console display code iniormation
which begins at a given location and assigns this information to the
list variables according to a given format specification. For example,

FORTRAN CODING FORM
p— C for Comment

{ ;Lea*te‘—\géz FORTRAN STATEMENT 50'!:‘
l'Lifé‘A1OLHTEST1121718110111|lx|111111Llll1|l1|J|L1~11L!{
LJ_LA_K‘DECODE(l 5A)l\lllHllllLllll|lllllllJlLLilLli
S RORMAT (AR TALLE)

will set B = TESTbbbbbb in console display code
K 1278 in binary (integer)
and L =10 in binary (integer).

i

In this example, a —-character record is being decoded.
This record starts at location In fact, it is completely
contained in location A.

O

73]
‘J gl
i i
Hov o s braae!
3 !
Lo d o

Answer: 10, A

-968-

Consider now the same two cases which were used in VI.K,3. This
time we will start with the console display code characters in the

B array and DECODE the information back to numerical values.
Notice that the values obtained will not be the exact values we started
with, This is due to the rounding and truncation which occurred
during the ENCODE process,

Case 1. B Array
word 1 bl131.1114§116|b|6].
word 2 6]6|13]3|3|Ej+[0}2(Db
word 3 41616 .21 7T14]jb 4] 2
word 4 61.]/]0l0fb]1f{215]1b]|Db

DECODE (38, 30, B) A(l), A(2), Z, ZB, K
30 FORMAT (F7.4, E12.5, F8.3, F7.2, 14)

This will convert the characters in the B array according to the
format specified.

Ay = 3.1416

A(2) = 6.66333E+02 (666. 333)
Z = 466,274

ZB = 426,00

K = 125

Compare these values with the valuec in VT K 2.

VI.K.5 Case 2, B Array
(Cont.)

wordl |bjb|b|b|b]|b

>

word2 |6(.10/0]0|O0

word 3 biblibli112{5|b{b

oy o

DECODE (26, 20, B) ZB, K
20 FORMAT (F16.4, I10)

In this case

N
v}
|

= 426,0000
= 125

R
I

VI.K,6 Work exercise VI, K in your workbook at this time.

VI. L.
VI.L.1
1
o
N
)
i
VI.L.2
VI.L.3

Unformatted I/O (binary)

When writing numeric information on the printer, the binary values

in the computer must be converted to console display code according

to certain format specifications. Numeric values entered on the card
reader must also be converted according to format specifications.
Unformatted I/0 makes it possible to move values between the computer
and certain peripheral units without any conversion.

Suppose that one program is to compute values which will be used as
input to some later program. If a large number of values are in-
volved, they should be written on magnetic tape.

One way of saving values which have been computed is to write them
on

As was mentioned in part IV, formatted information may be written
onto magnetic tape. When it is formatted, the conversion must take
place both on output and then again when the tape is used as input to
another program.

The use of unformatted I/0O saves conversion time on both
and .
The use of unformatted I/O when applicable eliminates the loss of

accuracy which often occurs during conversion.

Unformatted I/0 preserves the complete sixty-bit word as well as
reducing computer .

Answer:

Answer:

Answer:

magnetic tape

input, output

time

~666-

VI.L.5

VI.L.6

VI.L.7

Unformatted 1/0 can be used with any peripheral unit which is
capable of storing the entire sixty-bit computer word. These
units include magnetic tape, disks, drums, and other special
storage devices.

Unformatted WRITE statements cannot be used to output information

on the

Statements for reading or writing unformatted information are
similar to formatted reads and writes. In the unformatted case,
the reference to the format is omitted. For example, where "i"
is the unit number and 'n'" is the FORMAT statement number,

READ (i, n) LIST
becomes READ (i) LIST in the unformatted case.

Write the statement which will output the first twenty values from
the array AMAT. Write these values on 1/0 unit 10 in unformatted
form.

The type of variables being transferred is not important to the I/0
statement since it moves the words without disturbing the binary
configuration. If the values are used as input to another program,
it is important to make sure that the values are considered to be of
the same type as they were in the original program.

If the second word written is real and the third word written is integer,

the second and third words should be treated as and

respectively when this information is read into the computer.

Work exercise VI.L in your workbook at this time.

Answer: printer

Answer:
WRITE(LOY(AMAT®@), =1, 20)

Answer: real, integer

-0gg-

VIi.M Data Files
Let us define a logical record as the information read or written
by one READ or WRITE statement. A data file will mean a set of
logical data records.
Vi.M.1 A data file will normally contain data records which are related
in some manner, but the collection of records which constitute a
file is completely arbitrary.
One WRITE statement creates data record on tape or
other output device.
VI.M.2 Data files are created by writing an end-of-file indicator at the
place you wish to end the file. This is accomplished by the
statement
END FILE i
This causes an end-of-file to be written on unit i. Sections VI.M.6,
7, and 8 will explain the usefulness of the end-of-file indicator.
The statement
f O for Comment FORTRAN CCDING FORM
vState~ . i
’I;“jn No & FORTRAN STATEMENT |
LE— 50 50,
| ' IEND ,FILE 7 .
LR U 0 Y ST S O O N S G 0 A U T UG U000 UG 1O U A 0 W) A0 000 W0 A0 O TR OO M .

will cause an end-of-file indicator to be written on I/0 unit

Answer: one

-18¢-

VI.M.3

VIi.M.4

VIi.M.5

Before writing your first data record onto a magnetic tape, make
sure that the tape is positioned at the beginning of the tape (load
point). This is accomplished by the statement

REWIND i

where i is the I/0 unit.

The use of the REWIND instruction before reading a tape will

insure that the (first, last) record on the tape will be Answer:

read by the first READ statement.

The statement

BACKSPACE i
will cause the tape to move back one record from its present position.
If the read head of tape 8 is positioned immediately at the beginning

of the fourth record, the execution of a BACKSPACE 8 instruction
will position the tape such that the read head is immediately at the

beginning of the record. ‘ Answer:

Both the REWIND and BACKSPACE statements are ignored if the
tape is already positioned at load point (beginning of the tape).

The REWIND statement causes the tape to rewind until it reaches

the . Answer:

first

third

load point

-geE-

VI.M.6

VIi.M.7

When reading information from tape, it is desirable to know when
the end of a data file is reached. This is determined, of course,
by the presence of the end-of-file indicator. .

The end of a data file is signaled by the reading of an
indicator.

After a READ statement, there are three different statements
which may be used to determine if an end-of-file indicator was
read. They are:

IF (ENDFILE i) N;, Np
IF (EOF, i) Ny, Np
IF (IOCHECK, i) N;, Na

The 1 is an I/0 unit and N; is the statement number to which control
is transferred if unit i read an end-of-file indicator on its last read
operation. Control goes to Nz if no end-of-file was found.

Write a statement to read an unformatted record from tape unit 9
in array AMAT. Assume that AMAT has been dimensioned 100 and
that the record length on the tape is 100 words.

Write a statement to determine if the above READ statement actually
read the data record or encountered an end-of-file indicator. Go to
statement 10 if a data record was read. Go to statement 20 if an end-
of-file was encountered.

Answer: end-of-file

Answer:
READ (9(AMAT(I), I=1, 100)
or READ (9) AMAT

Answer:

IF (EOF, 9) 20, 10
or IF (ENDFILE 9)20, 10
or IF (IOCHECK, 9)20, 10

. —gE8-

VI.M.8

VI.M.9

As a review, write the six new statements which have been
introduced in this section.

Work exercise VI.M in your workbook at this time.

Answer:

END FILE i

REWIND i
BACKSPACE i

IF (ENDFILE i) N;, Np
IF (EOF, i) N;, Ny

IF (IOCHECK,iN;, Np

~$€8-

VI.N NAMELIST Statement

A list of variables for input or output may be assigned a name,
thus, the term NAMELIST. The assigned name may later be
used as a shorthand method for referencing all variables in the
list,

VI.N.1 The form of the NAMELIST statement is

NAMELIST/NAME1/3;, a5, ,..,aj/NAMEz/bl, by, bg, ...,bn

where the a, and bi are simple variables or array names,

For example,
FORTRAN CODING FORM

C for Comment

f
o 1
State: FORTRAN STATEMENT |
L CED7. 50, 73 0
o xIMEiNISIInOJ\I 'Al(l3l)l’lK(lllol)l’I}(}(lziol)l TS JE U NN W TN L O Y O IR A NS [lfl
. NAMELIST/AMAT/A K, X, Y
J | I I S |l I o T 4

Ll
IAME!LlILS lrrx/ls 1Ecc ;/le 2 API

L SN I

' i
s v v v b v b by g 1 O B 0 A N WA

bedod b

lJlllJlElxll}llll!IllllllllJJl Lo sl
3

assigns the name AMAT to the list of variables A, K, X, and Y. The
name SEC is assigned to the list of variables R and P.

A list of variables to be used for input or output may be given a name
by use of the NAMELIST statement., True or false? Answer: True
Assuming that the variables Z and ZZ have been dimensioned, write

a NAMELIST statement which will associate these variables with the

name ZLIST. Answer:

NAMELIST/Z1IST/Z,Z2Z

-GgE-

VI.N.2

VI.N.3

The NAMELIST statement must conform to the following rules.

a.) The NAMELIST name must conform to the same
rules as variable names,

b.) The NAMELIST name is enclosed by slashes and
followed by a list of variable names separated by commas. This
sequence may then be repeated with other NAMELIST names and
lists if desired.

c.) The NAMELIST statement must appear prior to its
use in an I/0 statement,

d.) The NAMELIST name may appear only in I/O statements.
e.) A dimensioned declaration of an array used in a

NAME LIST must precede the NAMELIST statement.

A NAMELIST name may appear in a mathematical computation,

True or false? Answer:

Now that you know how to write NAMELIST statements, the next
step is to learn how they can be used. The form of the READ or
WRITE stateinent using NAMELIST is

READ (i, NAME) or
WRITE (i, NAME)

where i is the I/O unit and NAME is a NAMELIST name. The
NAMELIST statement must the use of the NAMELIST

name in an I/0 statement. Answer:

False

precede

-98¢-

VI.N.4

C for Commenf

To illustrate the use of the NAMELIST, consider the statements

FORTRAN CODING FORM

-IState— ;g
%nent No.¢
NASY

FORTRAN STATEMENT

50

|
i

SR

DIIL:MLFTlelllolNl IZ (8)l,lZZ (4

|
Lod 1

f
S I

|

FORE T W S

!
llllllllilllllllll'lllllllJll!i‘

NAMELIST/ZLIST /Z,2Z,K
T T
IEIAJD(lsx’lzll_"lIxS:rx)

J_ll’i]li(!ll{liil(lJ}Il!l‘zi'!{;

L
N N T U 0 (YT U U0 WO S U0 U WY SN S S A G U O S O ST S Wt 80

These statements can be used to réad values into as many of the

locations in Z and Z7Z as desired. This is determined by the form

of the information which is actually read. This information must

start with the character $ in column 2, immediately followed by the
NAMELIST name, followed by a blank. This in turn is followed by the
data and ended by $END. Each data item is composed of an array name,
array item, or simple variable along with the values to be read for those
variables. To show the exact form, suppose that values of Z(2), Z(5), K
and all values of ZZ are to be input from cards. The cards might have the
following form:

Card 1 b$Z LISTDZ(2)=25.6, Z(5)=6.2, K=3,

Card 2 bZZ=1,0, 3.4, 2*2.5, $END

The following rules apply to NAMELIST data cards.

1.) Column 1 must always be left blank.
2.) No space is left between the character $ and the NAMELIST name.
3.) A comma must follow each constant data value. This means that the

constant data values must be separated from each other and from a following
variable name.

~LEE-

VI.N.4
(Cont.)

VI.N.5

4,) A blank must follow the NAMELIST name.
5.) If more than one card is required for data, each card
except the last must end with a constant followed by a comma.
6.) Columns 2-80 may be used.
7.) The asterisk is used as a repeat symbol as was the case
in the DATA statement.
8.) The variable names in the input do not have to appear in
the same order as they appeared in the NAMELIST statement.
9.) Ina NAMELIST record, the mode of the variable name
supercedes the mode of the value.
10.) A $ or $END (either form is correct) ends a NAMELIST
record. v
11.) No information other than data may appear on a NAMELIST
data card. (i. e., Serial numbers, identification, etc.)

Write a data card which will assign 36.0 to ZZ(3) when read by the
three statements above.

The use of the NAMELIST statement for output will output all values
in the list in a format such that it may be read at a later time using
the same NAMELIST.

The statement WRITE(i, ZLIST) will write all variables named in
ZLIST in a format which can be read by the statement READ(i, ZLIST).
True or false ? .

Answer:
b$ZILISThZ Z(3)=36.0, $END

Answer: True

8886~

VI.N.6

The variable types which may be included in a NAMELIST statement
are integer, real, complex, double precision, and logical. The
appropriate type declaration must precede its use in a NAMELIST
statement. The constants input through the use of the NAMELIST
must agree in type with the associated variable.

For example,

FORTRAN CODING FORM

i, C for Comment '
‘State- [+
mentNols FORTRAN STATEMENT |
=i017_ L
i
:HliCIOMPL{EX |C14411 11111!:1_111:11!1111l1111L|1x;li'
_J_LLL;_,J‘}JMELIST/TELSKTl/C’D’XJ IS S N TN I A 0 WK U N U U T O O N VT O T W k
Jl‘% EAD (5 TEST)IL]IIIJI]III(l]lllLlllllIJ_Llill‘L}
defines the complex variables C and D as NAMELIST variables,
When used with the previous statements, the following data card will
set X = 25,4 and the complex variable D to (3.2 + 12, 1i),
b$TESTbX=25.4, D=(3.2, 12.1) $END
VI.N.7

Work exercise VI.N in your workbook at this time.

73 80
o b
llLJl[lllJ%

|

H
P WS WU S N SO U U O |

-ggg-

VI.O

VI.O.1

VIi.O0.2

Program Files

In Chapter IV we learned how to present data to the computer on
punched cards or magnetic tape, and how to receive data from the
computer on the printer, punched cards or magnetic tape. This
transfer of data occurred during the execution of a program,
according to I/O control statements and FORMAT statements
written by the programmer. Now perhaps you wonder how the
program itself gets into the computer--certainly a vital piece of
knowledge, if the program is ever to be executed!

Let us first consider the make~up of a typical FORTRAN program.
The basic building block is one line of coding which, since it will be
punched onto a single card, may be thought of as a card image. This
card image may be any acceptable FORTRAN statement, continued
statement, END card, or comment,

A card image is a single

Several lines of coding, or card images, grouped together (and following
applicable FORTRAN rules!) make up a single main program or a
single subprogram. As you have learned previously, the end of a single
program is signified by an END card.

Is END an executable FORTRAN statement ?

Answer: line of coding

Answer: No

VI.O.3

VI.O.5

For various reasons, it is desirable to separate some often-used
coding into subprograms, and one main program may call upon
many subprograms during the course of execution. A main program
together with all its required subprograms may be thought of as a
file of executable programs.

A program is made up of several . Answer: card images

Several high powered programs govern the course of action which
the computer will follow. These routines are called executive
routines or system routines, and are used for reading in other
programs~-your programs--compiling these programs into
executable code and executing these programs.

Executive, or systems, routines are computer . Answer: programs

The computer hardware itself is constructed so as to be able to read
the necessary systems routines from magnetic tape, disc or other
1/0 device, and then give control of execution to these routines. This
process is sometimes called bootstrap.

Bootstrap refers to the process of getting programs into
the computer. Answer: executive

-1ve-

VI.O.6 Just as your program will probably read in data, certain executive
routines will also read in data; but, their "data' is your program itself.
And just as your program operates upon its data in specified ways,
the executive routines operate upon your program in specified ways;
their operations consist of compiling (translating into executable code),
error detection, loading into core, listing, punching etc.

Some systems routines use as data. Answer: programs
VI1.O.7 Systems routines are capable of doing many things with your program,
' but you may specify just which systems operations you want performed

on your program. You do this by means of control cards.

A special kind of data card for the executive routines, telling what
system operations are desired, is the . ’ Answer: control card

VI.O.8 Various control cards relay different types of information to the systems
routines. For example, one card is for accounting purposes: it tells job
number, pricrity, etc. Another card tells that the FORTRAN compiler
will be needed. Another card may specify which input or output files will
be used.

Executive routines can read many types of control cards. True or false?
Answer: True

Vi.O.9 Every FORTRAN main program to be compiled requires a program card
which specifies the name of the program and the I/0 files it will need to
use. :

The program card specifies the and the . Answer: program name,
1/0 files

-Z¥E-

VI.P

VI.P.1

V1.P.2

System Files

We have previously discussed data files and program files. A
system file, like the other type files, will denote a particular set
of information which is related in some manner. The requirement
for information to belong to a particular system file is that the
information be input or output on a particular I/0 file.

To illustrate system files, consider a small program which reads
some information from cards, performs calculations, and prints
the results. Such a program makes use of two system files. First,
the set of all information to be read by the card reader constitutes
a system input file and second, the set of all information output to
the printer makes up a system output file.

The set of all information transmitted to or from a particular 1/0
file is called a .

The two system files for the card reader and printer are used in
almost all programs. Because of this frequent use, they have been
assigned file names of INPUT and QUTPUT respectively.

The system file name for the card reader is .

Answer:

Answer:

system file

INPUT

Vi.P.3 The program card which immediately precedes your main program
must have the form

PROGRAM name (file names)

where "name" is the name by which you want to refer to your
program and "file names'' specify the systems file names a
program requires.

The initial P of PROGRAM should be punched in column 7 of the card.

Program card
PROGRAM MAIN (INPUT, OUTPUT)

will name the following program , and will call for how
many I/0 files ? . Answer: MAIN, two

VI.P.4 When INPUT and OUTPUT are used to specify I/O files on a program
card, they refer to the standard units for card reader and printer,
respectively. The system will recognize these references without
any further information.

-§78-

The standard files for card reader and printer are called Answer: INPUT, OUTPUT
and

VI.P.5 If you wish to use other I/O files in addition to or in place of

INPUT and OUTPUT, they must be listed on the program card.
As an example, suppose the program WORK will read data from
cards, write results on the printer, use one file for "scratch"
computations during execution, and will read data from a
special data tape. The program card might look like

S, UUIPUT, JGFPES, TAPE])

800000090000001000060080 41101101 1:0000 €0000000000200000000000000000000000000000

123456 78 9100213181516 17 18132021 2223262525 27 20 29 30 31 32 33 34 35 35 37 38 39 40 4142 43 44 4545 47 48 4350 51 52354 5556 57 58 5960 61 62 63 64 6566 67686970 11 7273 74 7576 77 75 13 80

How many I/0 files are called for by the program card ?

PROGRAM UNGMIT CINPUT:DUTPUTs TAPE7s TAPE1S; TAPE4S? N
00000000000000 00060 0 600 0 0 ¢000 00000 O0QO0O0O0OGOOOOO0OOCOHO0000000000000D00
1234567881001 1113141515171313202\2223262525272325]03}3233343536313839404!4243444546474849505\5233545556575359806!62536455666758597071 T273747151677787980
BRRRER R R R R RN R R R R R R R R R RN R RN R R R R R A R R R R R AR R AR R R R R R AR R R RN R AR R R RN

L 2222222222222022

Answer:

Five

~G¥€-

Vi.P.6 All references to unit 9 in the FORTRAN program will use the system
1/0 file TAPE9. References to unit 7 will use system I/0 file TAPE7,
etec. If an integer variable is assigned a unit number and then used in
the I/0 reference, that variable name would be used to designate the
appropriate system I/0 file,

As an example, consider the system 1/0 file TAPE9 which is shown
in the PROGRAM card below. The variable IX must be assigned
a unit number prior to its use in an I/O statement. The unit number
assignment may be through input, DATA statement or calculation. The
following code will illustrate this procedure,

f C for Comment . 1
State- J‘F ' | i

Tt FORTRAN STATEMENT ;
men‘c\o 8 o - - 50, A . ad

' PROGRAM, SHOW (INPUT, OUTPUL, TA PEI,

L!lllllllll[

i

.

I
r.1_1_1_1_4_11_._1.1MLnnl1xlllllllimmILxHix;LLl11111Hx;l\l
1

{
A

[_L._L. L_l_L_L_I_J__L_l.:
!

i
PR T WS WS A T U W R
i

T T DUULUEN 8 VO VY VO TS VAU UANC YR NS JUNNN WS YT WG WU U S HR VA WS S O N llxnlllnllxlallllxglxg ISR YO WO TN JUO VR W0 T OO

L1t 1:1~|1:111|11J1114!1L1lexxxixllil:141!11'&411 A T S SO B NS A

lIA.I ‘DIMENSION Y(1xJ)111111111111111|141 TR R B B | L, [N A R 144_,:;

Lt Ix)(fqglx11-14111_]1114'11111'1111L111llxiJlixnln Illll;llli%

SN) '1x1§1xlrlx!lllll;lll[:1!111[LI|11!llllll'lxl} lllll!llllg

Ll tt (SRS N NNV N N0 DA NV N0 000 T O N Y S Y U U 50 O S VO SO0 VO U G O T A U Y O Ji'xnxxl;le%

Ll JL{)J'llll'iJlll_lllllllllllJlllJ‘llllll.lllig ‘!llll‘l'Jl%

: }

L1t LAnDI(IX) (Y(I) I=111’11109:) VAT AT AU S N A ST AU AR ¢ I T NS S
|

P L1y J_L(EOF I&)JSIOIOI’ 111111':llx|x!11141 b b S SRR ORI A ORI
|

Pl 111‘1111111[1(1111(:11111x|111¢11’:1:1!1::1 IR T AT

i lllllllilgllLIllllllllllllllLllllllxll[Llll TN IS AN R BRI

-9%6-

VI.P.6
(Cont.)

VI.P.7

VI.P.8

Indicate the name of the third system I/O file if the previous coding
is modified by removing the statement IX = 9 and rewriting the READ
statement as

READ (9) (Y(), I=1,100)

When tapes other than the standard input and output units are used,
they must have further identification, in addition to being listed on
the PROGRAM card. See youf‘:.instructor for the formats of all
control cards,

Work exercise VI.P in your workbook at this time,

Answer: TAPES

~L¥E-

VIIL.

VII.A.

VI A.1

PROGRAMMING TECHNIQUES

With the use of the FORTRAN tools now mastered, it is possible to
write computer programs of many degrees of complexity. At this point,
it is desirable to give some thought to the overall planning and execution
of problem solving on computers. Generally, to solve a problem, the

programmer must do four things:

Identify (clearly express) the problem
Outline the steps (logic) for its solution

Write the computer instructions (code)

Check-out or correct (debug) the program .

The four steps in problem-solving may be summed up as y
outline, , and checkout.

Once the problem is identified, the second step is to outline the steps
required to produce a solution. This outline is often in the form of a
graphical representation called a flow chart. A flow chart pictures
the sequence in which arithmetic and logical operations should occur,
and shows the relationship of one part of a program to other parts.

It may look something like this:

Answer:

identify
code

—~8¥%€-

VIL A.1
(Cont.)
SUM = 0.

SUM = ‘

Y=2X =50

Although there is no real standardization in the drawing of flow charts, the following
shapes may be accepted as generally recognizable: A rectangle represents a function,
a diamond represents a decision, a small circle indicates a connector, an elongated
hexagon indicates a predefined process or subroutine, a large circle indicates

termination.

Various input/output media have these distinctive representations:

Tape l Card
(I/ o) ; vo .

~6¥E-

Use of these various shapes greatly facilitates the reading of a flow chart, and

VILLA.1

(Cont.) comprehension of the overall plan of execution, from input, through calculations,

to output.
Flow charts may be drawn in varying degrees of detail. For overall planning, a

flow chart should be quite general, indicating only major functions of various

sections of the program. Each major section may have its own flow chart,

containing more detail, which may serve as a guide to coding.
Answer:

Would you consider the following flow charts to be general or detailed:
(a) Detailed

VIL A.2.
A Data
| (b) General
4

Vi
Unpack and

Store in
Proper Tablesg

x=a sin §

v =b cos 8

Nd

;Z_:L;:,z_z_, -

-06¢€-

A good flow chart will provide the following services:
It will serve as a means of experimenting with various approaches to

VII.A.2
(Cont.)
@) ,
solving the problem.
It will provide a sound basis for coding.

(2)
It will be a useful piece of documentation, enabling others fo understand

(3)
readily the purpose and plan of the program,

General guidelines to drawing flowcharts include:
In drawing a flow chart, it is desirable to work from left fo right and top

1)
to bottom of the page.
Direction of flow of execution is indicated by lines with arrowheads

(2)
connecting the various boxes,
Connectors are used to indicate connections between remote parts of the

(3)
flow chart, so as to avoid a clutter of crossing lines,
Multiple entries to a box should combine into one line before actual entry.

4
Whenever possible, a flow chart should relate to a source-language listing

(5
by using statement numbers or page numbers for cross referencing.
(6) Programmer's name and date should be included.

Every major section of the program and every major decision should be

(N
represented on the flow chart.

168~

VIL. A. 3,

What three undesirable features do you find in this flow chart ?

Initialize
Counters

Counters

Perform
necessary
calculations

Print

Messages

Answer:

1. Printer Symbol
for tape output

2. Arrowheads
omitted

3. Crossing lines

VIILA.3
(Cont.)

VIL A, 4.

P

Any box of a flow chart may have several paths leading to it. A function box will
have only one path leading from it, but a decision box may have several exits.
Each exit should be labelled so as to indicate under what conditions it is used.

For example, these are commonly used decision techniques:

Test

2
v

Draw a flow chart for the FORTRAN statements:

Answers:

(3 IF(I. EQ.10) GO TO 4 (2)

(b) IF (SENSE LIGHT 1) 100, 200 | (o)

Not Set

VIL.A.4 A DO loop may be represented in a flow chart in this manner:
(Cont.) J/

Set index to
starting
value

(,.. -

Perform
calculations

as index reach NG = Increment
aximum val Index
VI A.5. Draw a flow chart for the FORTRAN statement: Answer:

DO 10 I=1, 200,5

10 CONTINUE

| I=1+5

VIL A,5
(Cont.)

VIL. B.1

Four objectives of computer programming are accuracy, speed,
simplicity and economy of storage. In order to achieve these
objectives, several aids are available to today's programmers.

In the course of trying to obtain the greatest possible accuracy,

an entire field of study, called numerical analysis, has developed.
This branch of mathemetics has studied techniques for handling
common mathematical problems on digital computers, considering
such problems asg error due to round-off or truncation, large (or
small) numbers, etc. From these studies have come generalized
techniques, or algorithms, for coping with such problems as eval-
uating various types of functions, handling matrices, and solving
various systems of equations. A good many of these techniques are
available from computer manufacturers or large computer users in
the form of generalized subroutines. Also, many books are available,
giving detailed descriptions of various techniques, on which programs
may be based.

Numerical analysis is concerned with finding methods of solving
mathematical problems on digital computers with great accuracy.

" True or false? . Answer:

In other computer problems accuracy is not at stake, but a selection
from various alternative logical techniques will determine the speed
with which the problem is solved. A classical example is the problem
of sorting a group of items into some specified order. Again, various
techniques have been worked out and are available to the programmer.
(See Chapin, Ned, An Introduction to Automatic Computers, Chapter 14,
for a discussion of sorting techniques.)

True

—-GGE-

VII.C.1

VII.D.1

Accuracy is always the prime concern of the programmer. ‘
True or false? Answer: False

While some programmers may take a certain pride in producing a
very sophisticated program, based upon complex and tricky logic,
it must be admitted that simplicity is a most desirable feature.
Often a programmer must assume responsibility for a program
written by another. Excessive complexity and clever tricks here
are an obstacle to understanding the program. Frequently a pro-
grammer is required to modify or up-date a program he had
written some time previously. His own earlier trickiness may now
be a hindrance to himself as he tries to refresh his memory.
Simplicity pays..

After a program has been written, it must be checked out or "debugged"

to find and correct errors in the program,

"Debug' means to correct or "get the bugs out" of a program, True or
false ? Answer: True

Several types of errors may exist at first--key-punch errors, coding
errors, logical errors. Key-punch and coding errors may often be
found by a careful perusal of the coding sheets and of the machine list-
ing of the program. Common mistakes to look for are I instead of 1,
O instead of 0, Z instead of 2, S instead of 5, misspelled variable
names, punctuation errors.

-9G¢-

VIL, D, 2

Find the errors in the following FORTRAN statements:

a,) DO 10I=1,5 M
b.) FORMAT (1 X 4HTEST/ (1X10E10. 2)

c.) DIMINSION ALPHA (50), BETA(50, 10)
d.) IDX = 3% (M+N) **AVAL/4

Some errors are detected by the compiler itself, and result

in messages to the programmer. "AC" - the number of
arguments in a current reference to a subroutine differs from
the number which occurred in a prior reference; or "CT" -
CONTINUE statement is missing a statement number; etc. (See

Control Data 6000 Series FORTRAN reference manual for list
of error codes.)

Logical errors are harder to find. There are several general

approaches to this problem, some of which are assisted by the
computer itself,

b.)

c.)

d.)

Answers:

Zero instead of O in DO

Missing terminal right
parenthesis

DIMENSION misspelled

Improper mode for
exponent

At

vi.D. 2
{Cont.)

For any arithmetic calculations, it is nccessary to have a hand-check--a
hand-calculated answer for a check cage, The check case should he such
as to point up errors, if any, in input values as well 2s erroneous sequence
of operations. Critical values, as we!l as normal values, should be tested.
If the problem originated with someona other than the programmer, as is
most often the case, it is desirahle for the originator of the problem to pro-
vide realistic check-case values for the hand-check, if not the entire check-
case solution,

Hand calculations are oftén tedious and should be performed by the originator

of the problem, rather than by the programmer. True or false? Answer: False

Another desirable debug technique is to catch mistakes bhefore they go on
the machine. A careful study of the coding will often turn up mistakes of
various types; and often, too, another programmer will see problems to

which the original programmer may he "blind”. Care and time should be
taken to find as many bugs as possibla before going onto the computer.

Items to look for while studying the coding are:

1.) Loop parameters -- will the computer execute the loop the
desired number of times ? ,

2., Csailing sequences ~- are they of proper length and variables
" ~I proper mode?

3.) Common storage -~ is the proper value available at the desired
time ?

-8gE-

VIL.D, 3
(Cont.)

VIO.D. 4

A)

- .

4.} Flow chart -- docs the {.ougram fol'ow the flew of logic
pres ('rz.ﬂd in the flow ctart?

5.) Tapes -~ are thocy rewound when they should be ?

6.) Constanis -- are they correct values?
- i

7.) Fraocilsns —- can the denominator ever become zero'?

8.) Inversc trig functions -- are the results in the proper
quadrant ?

A progreramer wio is urfomiliar with 2 progrem will be lezs 1ikely to
find coding or grammatical errors ir the program then will the author
of the program. True or {aise?

Tests of accuracy may be written int> the p"oo m, For example,
when solving a system of equations, the solution mar be tried out in
the equations during execution of the | program,

Every branch of a program should be {ested to assura that flow of
execution is correct for every possibie in_ut, This lesting & ver
difficult for large, complex pioblems, whore contiicueles arc many
or multiple, but it {s Important that it he daone.

False

~6SE8~

VII.D. 5

Vv

A programmer who is unfamiliar with a brogram will be less likely
to find lngical errors in the program than will the author of the

program. True or falge? Answer:

The most simple debugging technique is self-programmed. Be
generous with the print-out of intermediate information., Some of
this information could he identificaticn of a particular program -
branch reached, intermediate data to help verity a hand computed
check case or a count of a particular number of iterations required.
As the program is checked, the print statements no longer needed
may be removed. On the other hand, if the programmer sees a
need for more i:termediate information, other print statements may
be added.

To assist in debugging, most ‘com'puters and installations have available
various debugging zids. These include memory dump-- a printout of

- all or part of memory at any one given time; and tracing programs --

a printout of certain computer registers at each step of execution or at
certain requested points during execution, Memory dumps are time-
consuming, particularly if the computer is to continue execution of the
program fellowing the dump. Tracing routines are even slower, but
are of value as a lagt-resort debug technigue.

Before a programmer is through with a program he should provide
adequate documeniation of the program. This documentation is valuable
for his own records, for his employer, and for other programmers who
may have occasion to use his program. Documentation should include a
clear statemznt of the problem, 2 summary of any mathematical analysis

~ involved in sclving the problem, a flow chart indicating every basic decision

point in the pregram, and a listing of the checked-out program, complete
with comrizents and cress-referencing to the flow chart.

True

LT “Aaptuwy-VSYN

I *TOA ‘QLRT-¥D »

=098~

VILE.1

Three essential elements of docwmentation are: - ’

0] -

A few final helpful hints:

1.}

2.}

3.}

4.}

5.}

6.)

I-* is usually unwise to assume apn initial condition -- always
t it in the program, P

1

Tse variables instead of constanis whenever possible -- this

cfun. prevents trouble in communicsling between subrouiines
A el

and main pregram, and makes modifications of constont values
o2s5ier as re quirements or condiiions chonge,

"b

implicity 18 valun ,le - in geneval, the straightforward method

le
lic .
is just 2s econcvmical end more desiradble thun the devious methed,

wn

Make use of exizur-orograms -- large subwouiine lihreriss are
availeble to most programmers for most corapriters, Use them,
Be liberal with comm rents in grding - t‘}ew ere an vi0 o the
programmer end to others who may use the progyain,

Put sequence numbers on sourse cards -- A good insurance
policy to telie out on your sourne deck s to have your carde
sequenced. An accident thal causes your source deck to become
shuffled can sesm like a minor cat Jyirophe.

Answer: Statement of problem

Flow Chart ‘
Listing

